• Title/Summary/Keyword: Hypersensitive

Search Result 209, Processing Time 0.024 seconds

Soft Rot of Onion Bulbs Caused by Pseudomonas marginalis Under Low Temperature Storage

  • Kim, Yong-Ki;Lee, Seung-Don;Park, Chung-Sik;Lee, Sang-Bum;Lee, Sang-Yeob
    • The Plant Pathology Journal
    • /
    • v.18 no.4
    • /
    • pp.199-203
    • /
    • 2002
  • Soft rot occurred severely in onion bulbs stored under low temperature ($5^{\circ}C$) in storage houses at Changyoung, Kyungnam province, Korea in early 2000. Water-soaking and yellowish-brown lesions initially appeared on the outside scales of diseased onion bulbs, gradually progressing into the inside scales. Among the bacterial isolates obtained from the lesions, K-2 isolate was found to be responsible for the disease, which grew at a temperature range of from $0^{\circ}C$ to $36^{\circ}C$ with optimum temperature of $00^{\circ}$-$33^{\circ}C$. However, it showed strong pathogenicity to onion bulbs at $25^{\circ}C$ and $5^{\circ}C$ at 3 days and 2 months, respectively. The bacterium also caused soft rot on potato and showed hypersensitive reactions to tobacco and potato. The causal bacterium of onion soft rot was identified as Pseudomonas marginalis based on morphological, biochemical, and physiological characteristics including LOPAT, Soft rot in onion under low temperature storage caused by P. marginalis has not been previously reported.

A Case of Milk Protein Induced Enterocolitis Syndrome (Milk Protein Induced Enterocolitis Syndrome 1례)

  • Rhim, Suk-Ho;Park, Young-Sin;Park, Jae-Ock;Kim, Chang-Hwi
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.4 no.2
    • /
    • pp.238-242
    • /
    • 2001
  • Food allergy is a disease caused by an abnormal immunological reaction to specific food proteins. Whole milk and soy beans are the most frequent causes of food allergy, some studies show that 2.2~2.8% of children aged between 1 and 2 year are allergic to milk. It can be classified to acute (urticaria, asthma, anaphylaxis) or chronic (diarrhea, atopic dermatitis) allergy according to clinical symptoms, or to IgE related or non IgE related allergy by an immunological aspect. Generally, allergies invading only the GI tract are mostly due to a non IgE related reaction. These hypersensitive, immunologic reactions of the GI tract, not related to specific IgE for food, present themselves in many ways such as food protein-induced enteropathy, food protein-induced enterocolitis syndrome (FPIES), celiac disease, food induced protocolitis, or allergic eosinophillic gastroenteritis. FPIES is one kind of non IgE related allergic reaction and is manifested as severe vomiting and diarrhea in infants between 1 week and 3 months. We report a case of FPIES in a 40-day old male infant presenting with 3 times of repeated events of watery diarrhea after cow's milk feeding.

  • PDF

Effect of Minocycline on Activation of Glia and Nuclear Factor kappa B in an Animal Nerve Injury Model

  • Gu, Eun-Young;Han, Hyung-Soo;Park, Jae-Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.5
    • /
    • pp.237-243
    • /
    • 2004
  • Glial cells are activated in neuropathy and play a key role in hyperalgesia and allodynia. This study was performed to determine whether minocycline could attenuate heat hyperalgesia and mechanical allodynia, and how glial cell activation and nuclear factor kappa B (NF-kappaB) were regulated by minocycline in a model of chronic constriction of sciatic nerve (CCl). When minocycline (50 mg/kg, oral) was daily administered from 1 day before to 9 days after ligation, heat hyperalgesia and mechanical allodynia were attenuated. Furthermore, when minocycline treatment was initiated 1 or 3 days after ligation, attenuation of the hypersensitive behavior was still robust. However, the effect of attenuation was less when minocycline was started from day 5. In order to elucidate the mechanism of pain attenuation by minocycline, we examined the changes of glia and NF-kappaB, and found that attenuated hyperalgesia and allodynia by minocycline was accompanied by reduced microglial activation. Furthermore, the number of NF-kappaB immunoreactive cells increased after CCI treatment and this increase was attenuated by minocycline. We also observed translocation of NF-kappaB into the nuclei of activated glial cells. These results suggest that minocycline inhibits activation of glial cells and NF-kappaB, thereby attenuating the development of behavioral hypersensitivity to stimuli.

Plant defense signaling network study by reverse genetics and protein-protein interaction

  • Paek, Kyung-Hee
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.29-29
    • /
    • 2003
  • Incompatible plant-pathogen interactions result in the rapid cell death response known as hypersensitive response (HR) and activation of host defense-related genes. To understand the molecular and cellular mechanism controlling defense response better, several approaches including isolation and characterization of novel genes, promoter analysis of those genes, protein-protein interaction analysis and reverse genetic approach etc. By using the yeast two-hybrid system a clone named Tsipl, Tsil -interacting protein 1, was isolated whose translation product apparently interacted with Tsil, an EREBP/AP2 type DNA binding protein. RNA gel blot analysis showed that the expression of Tsipl was increased by treatment with NaCl, ethylene, salicylic acid, or gibberellic acid. Transient expression analysis using a Tsipl::smGFP fusion gene in Arabidopsis protoplasts indicated that the Tsipl protein was targeted to the outer surface of chloroplasts. The targeted Tsipl::smGFP proteins were diffused to the cytoplasm of protoplasts in the presence of salicylic acid (SA) The PEG-mediated co-transfection analysis showed that Tsipl could interact with Tsil in the nucleus. These results suggest that Tsipl-Tsil interaction might serve to regulate defense-related gene expression. Basically the useful promoters are valuable tools for effective control of gene expression related to various developmental and environmental condition.(중략)

  • PDF

Genomewide Profiling of Rapamycin Sensitivity in Saccharomyces cerevisiae on Synthetic Medium

  • Chang, Yeon-Ji;Shin, Chun-Shik;Han, Dong-Hun;Kim, Ji-Yun;Kim, Kang-In;Kwon, Yong-Min;Huh, Won-Ki
    • Genomics & Informatics
    • /
    • v.8 no.4
    • /
    • pp.177-184
    • /
    • 2010
  • The target of rapamycin (TOR) signaling pathway is a conserved pathway that regulates eukaryotic cell growth in response to environmental cues. Chemical genomic approaches that profile rapamycin sensitivity of yeast deletion strains have given insights into the function of TOR signaling pathway. In the present study, we analyzed the rapamycin sensitivity of yeast deletion library strains on synthetic medium. As a result, we identified 130 strains that are hypersensitive or resistant to rapamycin compared with wild-type cells. Among them, 36 genes are newly identified to be related to rapamycin sensitivity. Moreover, we found 16 strains that show alteration in rapamycin sensitivity between complex and synthetic media. We suggest that these genes may be involved in part of TOR signaling activities that is differentially regulated by media composition.

Toward Functional Genomics of Plant-Pathogen Interactions: Isolation and Analysis of Defense-related Genes of Rot Pepper Expressed During Resistance Against Pathogen

  • Park, Do-Il;Lee, Sang-Hyeob
    • The Plant Pathology Journal
    • /
    • v.18 no.2
    • /
    • pp.63-67
    • /
    • 2002
  • To understand plant-pathogen interactions, a complete set of hot pepper genes differentially expressed against pathogen attack was isolated. As an initial step, hundreds of differentially expressed cDNAS were isolated from hot pepper leaves showing non-host resistance against bacterial plant pathogens (Xanthomonas campestris pv. glycines and Pseudomonas syringae pv. syringae) using differential display reverse transcription polymerase chain reaction (DDDRT-PCR) technique. Reverse Northern and Northern blot analyses revealed that 50% of those genes were differentially expressed in pepper loaves during non-host resistance response. Among them, independent genes without redundancy were micro-arrayed for further analysis. Random EST sequence database were also generated from various CDNA libraries including pepper tissue specific libraries and leaves showing non-host hypersensitive response against X. campestris pv. glycines. As a primary stage, thousands of cDNA clones were sequenced and EST data were analyzed. These clones are being spotted on glass slide to study the expression profiling. Results of this study may further broaden knowledge on plant-pathogen interactions.

Investigation into the mechanism of anti-asthmatic action of Lepidium sativum

  • Goyal, BR;Goyal, RK;Mehta, Anita A
    • Advances in Traditional Medicine
    • /
    • v.8 no.3
    • /
    • pp.286-294
    • /
    • 2008
  • We have studied the possible mechanism of anti-asthmatic action of ethanolic extracts of dried seeds of Lepidium sativum (EXLS, 400 mg/kg) using various experimental models. EXLS produced an increase in the Pre-Convulsion Dyspnoea time induced by histamine and acetylcholine aerosol, a significant reduction in the elevated leucocyte counts in the Broncho-Alveolar Lavage fluid of sensitized guinea-pigs and reduction in the paw edema volume as compared to the control rats. Treatment with EXLS also produced decrease in the elevated histamine release from the sensitized guinea-pig lungs. The anti-asthmatic anti-inflammatory responses of EXLS was supported by improvement in microscopic changes like infiltration of inflammatory cells, submucosal edema, epithelial desquamation and reduced lumen size of the bronchi. The $pD_2$ values of histamine in tracheal chain and taenia-coli were significantly greater and that in lung strip was lower in the sensitized animals as compared to control. Treatment of sensitized guinea pigs with EXLS significantly decreased $pD_2$ values of histamine in all three preparations. Our data suggest the prevention of hyper-responsiveness in bronchial smooth muscles and inhibition of the immediate hypersensitive reaction, histamine release in the lungs and the infiltration of various inflammatory cells as the possible mechanisms of anti-asthmatic activity of EXLS.

MAP kinase kinase kinase as a positive defense regulator in rice-blast fungus interactions

  • Kim, Jung-A;Jung, Young-Ho;Lee, Joo-Hee;Jwa, Nam-Soo
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2004.10a
    • /
    • pp.48-52
    • /
    • 2004
  • We have found the role of rice mitogen-activated protein kinase kinase kinase (MAPKKK), OsEDR1, as controling hypersensitive response (HR) and increased disease resistance to rice blast fungus Magnaporthe grisea. Generation of transgenic rice plants through introduction of the over-expression construct of OsEDR1 using Agrobacterium-mediated transformation results in lesion mimic phenotype. Up-regulation of defense mechanism was detected through detection of increased transcription level of rice PBZ1 and PR1a. Inoculation of rice blast fungus on the lesion mimic transgenic lines displayed significantly increased resistance. The disease symptoms were arrested like HR responses which are commonly detected in the incompatible interactions. High accumulation of phenolic compounds around developing lesions was detected under UV light. There was variation among transgenic lines on the timing of lesion progression as well as the lesion numbers on the rice leaves. Transgenic lines with few lesions also show increased resistance as well as equal amount of grain yields compared to that of wild type rice cultivar Nipponbare. This is the first report of the MAPKKK as a positive regulator molecule on defense mechanism through inducing HR-like cell death lesion mimic phenotype. The application of OsEDR1 is highly expected for the development of resistant cultivars against rice pathogens.

  • PDF

Calcineurin-Responsive Transcription Factor CgCrzA Is Required for Cell Wall Integrity and Infection-Related Morphogenesis in Colletotrichum gloeosporioides

  • Wang, Ping;Li, Bing;Pan, Yu-Ting;Zhang, Yun-Zhao;Li, De-Wei;Huang, Lin
    • The Plant Pathology Journal
    • /
    • v.36 no.5
    • /
    • pp.385-397
    • /
    • 2020
  • The ascomycete fungus Colletotrichum gloeosporioides infects a wide range of plant hosts and causes enormous economic losses in the world. The transcription factors (TFs) play an important role in development and pathogenicity of many organisms. In this study, we found that the C2H2 TF CgCrzA is localized in both cytoplasm and nucleus under standard condition, and it translocated from cytoplasm to nucleus in a calcineurin-dependent manner. Moreover, the ΔCgCrzA was hypersensitive to cell wall perturbing agents and showed severe cell wall integrity defects. Deletion of the CgCRZA inhibited the development of invasive structures and lost pathogenicity to plant hosts. Our results suggested that calcineurin-responsive TF CgCrzA was not only involved in regulating cell wall integrity, but also in morphogenesis and virulence in C. gloeosporioides.

Ascophyllum and Its Symbionts. VII. Three-way Interactions Among Ascophyllum nodosum (Phaeophyceae), Mycophycias ascophylli (Ascomycetes) and Vertebrata lanosa (Rhodophyta)

  • Garbary, David J.;Deckert, Ron J.;Hubbard, Charlene B.
    • ALGAE
    • /
    • v.20 no.4
    • /
    • pp.353-361
    • /
    • 2005
  • Ascophyllum nodosum (L.) Le Jolis has a systemic infection with the ascomycete Mycophycias ascophylli (Cotton) Kohlmeyer and Volkmann-Kohlmeyer with which it establishese a mutualistic symbiosis. In addition, A. nodosum is the host for the obligate red algal epiphyte, Vertebrata lanosa (L.) Christensen. Using light and electron microscopy we describe morphological and cytochemical changes occurring as a consequence of rhizoid penetration of V. lanosa into cortical host tissue. Rhizoids induce localized cell necrosis based on physical damage during rhizoid penetration. Host cells adjacent to the rhizoid selectively undergo a hypersensitive reaction in which they become darkly pigmented and become foci for hyphal development. Light and electron microscopy show that M. ascophylli forms dense hyphal aggregations on the surface of the V. lanosa rhizoid and extensive endophytic hyphal growths in the rhizoid wall. This is the first morphological evidence of an interaction between M. ascophylli and V. lanosa. We speculate that M. ascophylli may be interacting with V. lanosa to limit tissue damage to their shared host. In addition, the fungus provides a potential pathway for the transfer of materials (e.g., nutrients and photosynthate) between the two phototrophs.