• Title/Summary/Keyword: Hyperlocomotion

Search Result 6, Processing Time 0.028 seconds

Methanol extract from radix of Glycyrrhizae uralensis attenuate methamphetamine-induced hyperlocomotor activity (감초 메탄올 추출물의 메스암페타민 유도 과다보행활동에 대한 억제작용)

  • Zhao, ZhengLin;Wang, Yan;Lin, Feng;Fu, Hui;Zhou, FuBo;Chang, Suchan;Han, Nu Ri;Jung, Dae Hwa;Yang, Chae Ha;Kim, Sang Chan;Zhao, RongJie
    • Herbal Formula Science
    • /
    • v.22 no.1
    • /
    • pp.105-112
    • /
    • 2014
  • Background and objective: Methamphetamine (Meth) is a widely abused psychostimulant that produces hyperlocomotion in rodents. Radix of Glycyrrhizae uralensis comprises a variety of bioactive components that have neuroprotective effects. In a previous study, we have demonstrated methanol extracts from radix of Glycyrrhizae uralensis (MEGR) suppress acute cocaine-induced extracellular dopamine release in the nucleus accumbens. In the present study, we investigated the effect of MEGR on acute Meth-induced hyperlocomotion. Methods: Male Sprague-Dawley rats were orally administered with MEGR (60 mg/kg and 180 mg/kg) 60 min prior to an intraperitoneal injection of Meth (1.0 mg/kg). Results: Behavioral analysis showed acute Meth greatly increased locomotor activities, while pretreatment with MEGR dose dependently inhibited the hyperlocomotion. In parallel, there were markedly increased levels of dopamine and its metabolite 3, 4-dihydroxyphenylacetic acid in the nucleus accumbens tissues in Meth-treated rats, which were also almost completely reversed by 180 mg/kg MEGR. Conclusions: These results showed that radix of Glycyrrhizae uralensis attenuates Meth-induced hyperlocomotion by inhibiting dopamine synthesis and utilization, suggesting that radix of Glycyrrhizae uralensis might be effective in blocking the rewarding effect of Meth.

Inhibitory Effects of (-)-Epigallocatechin gallate on Morphine-Induced Locomotor Sensitization and Conditioned Place Preference in Mice

  • Eun, Jae-Soon;Kwon, Han-Na;Hong, Jin-Tae;Oh, Ki-Wan
    • Biomolecules & Therapeutics
    • /
    • v.14 no.3
    • /
    • pp.125-131
    • /
    • 2006
  • The inhibitory effects of (-)-epigallocatechin gallate (EGCG), a major compound of green tea, on the development of locomotor sensitization, conditioned place preference (CPP) and dopamine receptor supersensitivity induced by the repeated administration of morphine were investigated in mice. A single administration of morphine produces hyperlocomotion. The repeated administration of morphine develops sensitization, a progressive enhancement of locomotion, which is used as a model for studying the craving and drug-seeking behaviors characterizing addiction, and CPP, which is used as a model for studying drug reinforcement, respectively. EGCG inhibited morphine-induced hyperlocomotion, sensitization and CPP. In addition, EGCG inhibited the development of postsynaptic dopamine receptors supersensitivity, which may be an underlying common mechanism that mediates the morphine-induced dopaminergic behaviors such as sensitization and CPP. Apomorphine (a dopamine agonist)-induced climbing behaviors also were inhibited by a single direct administration of EGCG These results provide evidence that EGCG has anti-dopaminergic activity, as inhibiting the development of dopamine receptor supersensitivity and apomorphine-induced climbing behaviors. Therefore, it is suggested that green tea may be useful for the prevention and therapy of these adverse actions of morphine.

Inhibitory Effects of Paeonol on Morphine-Induced Locomotor Sensitization and Conditioned Place Preference in Mice

  • Eun, Jae-Soon;Bae, Ki-Hwan;Yun, Yeo-Pyo;Hong, Jin-Tae;Kwon, Han-Na;Oh, Ki-Wan
    • Archives of Pharmacal Research
    • /
    • v.29 no.10
    • /
    • pp.904-910
    • /
    • 2006
  • The inhibitory effects of paeonol, a major compound of Paeoniae radix, on the development of locomotor sensitization, conditioned place preference (CPP) and dopamine receptor supersensitivity induced by the repeated administration of morphine were investigated through behavioral experiments. A single administration of morphine produces hyperlocomotion. Repeated administration of morphine develops sensitization (reverse tolerance), a progressive enhancement of locomotion, which is used as a model for studying the drug-induced drug-seeking behaviors, and CPP, which is used as a model for studying drug reinforcement. Paeonol inhibited morphine-induced hyperlocomotion, sensitization and CPP. In addition, paeonol inhibited the development of postsynaptic dopamine receptors supersensitivity, which may be an underlying common mechanism that mediates the morphine-induced dopaminergic behaviors such as sensitization and CPP. Apomorphine (a dopamine agonist)-induced climbing behaviors also were inhibited by a single direct administration of paeonol. These results provide evidence that paeonol exerts anti-dopaminergic activity, and it is suggested that paeonol may be useful for the prevention and therapy of these adverse actions of morphine.

Danshensu Isolated from Prunella vulgaris var. Lilacina Attenuates MK-801-induced Prepulse Inhibition Deficits in Mice (하고초 추출물로부터 분리된 Danshensu의 MK-801으로 유도된 사전자극 억제 손상의 회복에 대한 작용)

  • Hong, Sung In;Park, Se Jin;Lew, Jae Hwan;Ryu, Jong Hoon
    • Korean Journal of Pharmacognosy
    • /
    • v.44 no.2
    • /
    • pp.97-103
    • /
    • 2013
  • Schizophrenia is a severe psychiatric disorder and characterized by positive symptom (i.e., delusions, hallucinations), negative symptom (i.e., lack of emotion, social withdrawal), and cognitive impairment. Previously, we reported that the ethanolic extract of Prunella vulgaris var. lilacina attenuated the MK-801-induced schizophrenia-like behaviors such as prepulse inhibition (PPI) deficits and cognitive impairment in mice. The aim of the present study was to investigate whether danshensu isolated from P. vulgaris var. lilacina attenuates MK-801-induced sensorimotor gating dysfunction (PPI deficits), hyperlocomotion, and memory impairment in mice. Acute administration of danshensu (1, 3, or 10 mg/kg) significantly ameliorated the MK-801-induced PPI deficits in the acoustic startle response test. We also observed that the impaired recognition memory induced by MK-801 was attenuated by danshensu (1 mg/kg) in the novel object recognition test. However, danshensu failed to reverse the MK-801-induced hyperlocomotion in the open-field test. Collectively, the present results indicate danshensu would be an active agent for treating neuropsychiatric disorders such as schizophrenia.

Evodiamine Reduces Caffeine-Induced Sleep Disturbances and Excitation in Mice

  • Ko, Yong-Hyun;Shim, Kyu-Yeon;Lee, Seok-Yong;Jang, Choon-Gon
    • Biomolecules & Therapeutics
    • /
    • v.26 no.5
    • /
    • pp.432-438
    • /
    • 2018
  • Worldwide, caffeine is among the most commonly used stimulatory substances. Unfortunately, significant caffeine consumption is associated with several adverse effects, ranging from sleep disturbances (including insomnia) to cardiovascular problems. This study investigates whether treatment with the Evodia rutaecarpa aqueous extract (ERAE) from berries and its major molecular component, evodiamine, can reduce the adverse caffeine-induced sleep-related and excitation effects. We combined measurements from the pentobarbital-induced sleep test, the open field test, and the locomotor activity test in mice that had been dosed with caffeine. We found that ERAE and evodiamine administration reduced the degree of caffeine-induced sleep disruption during the sleep test. Additionally, we found that evodiamine significantly inhibits caffeine-induced excitation during the open field test, as well as decreasing hyperlocomotion in the locomotor activity test. Additional in vitro experiments showed that caffeine administration decreased the expression of ${\gamma}$-aminobutyric acid $(GABA)_A$ receptor subunits in the mouse hypothalamus. However, evodiamine treatment significantly reversed this expression reduction. Taken together, our results demonstrate that ERAE and its major compound, evodiamine, provide an excellent candidate for the treatment or prevention of caffeine-induced sleep disturbances and excitatory states, and that the mechanism of these beneficial effects acts, at least in part, through the $GABA_A$-ergic system.

Differential Effects of Typical and Atypical Antipsychotics on MK-801-induced EEG Changes in Rats

  • Kwon, Jee-Sook;Kim, Ki-Min;Chang, Su-Min;Kim, Choong-Young;Chung, Tai-Ho;Choi, Byung-Ju;Lee, Maan-Gee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.1
    • /
    • pp.17-22
    • /
    • 2005
  • We examined whether the abnormal EEG state by NMDA receptor blocker MK-801 can be reversed by typical and atypical antipsychotics differentially by comparing their spectral profiles after drug treatment in rats. The spectral profiles produced by typical antipsychotics chlorpromazine (5 mg/kg, i.p.) and haloperidol (0.5 mg/kg, i.p.) were differ from that by atypical antipsychotic clozapine (5 mg/kg, i.p.) in the rats treated with or without MK-801 treatment (0.2 mg/kg, i.p.) which produce behavioral abnormalities like hyperlocomotion and stereotypy. The dissimilarity between the states produced by antipsychotics and the control state was examined with the distance of the location of the canonical variables calculated by stepwise discriminant analysis with the relative band powers as input variables. Although clozapine produced more different state from normal state than typical antipsychotics, clozapine could reverse the abnormal schizophrenic state induced by MK-801 to the state closer to the normal state than the typical antipsychotics. The results suggest that atypical anesthetic can reverse the abnormal schizophrenic state with negative symptom to the normal state better than typical antipsychotic. The results indicate that the multivariate discriminant analysis using the spectral parameters can help differentiate the antipsychotics with different actions.