• 제목/요약/키워드: Hyperion Hyperspectral Image

검색결과 36건 처리시간 0.028초

Hyperion과 ALI 영상의 융합을 위한 블록 기반의 융합기법 평가 (Evaluation of Block-based Sharpening Algorithms for Fusion of Hyperion and ALI Imagery)

  • 김예지;최재완
    • 한국측량학회지
    • /
    • 제33권1호
    • /
    • pp.63-70
    • /
    • 2015
  • 영상융합 기법은 고해상도 영상을 이용하여 저해상도 영상의 공간해상도를 증대시키는 방법이다. 본 논문에서는 EO-1 위성에 탑재된 ALI 센서와 Hyperion 센서로부터 취득된 고해상도 흑백영상, 저해상도 다중분광 영상 및 초분광 영상을 활용한 초분광 영상의 융합기법에 대한 연구를 수행하였다. 특히, 초분광 영상과 다중분광 영상의 특성을 고려하여 초분광 영상의 블록을 구성하여 ALI 및 Hyperion 영상에 적용하고, 이에 따른 영상융합 기법의 성능을 평가하고자 하였다. 실험결과, 고해상도 흑백영상만을 사용한 융합결과와 비교하여 저해상도 다중분광 영상을 활용한 블록기반의 융합기법이 공간해상도를 효율적으로 향상시킬 수 있음을 확인하였으며, 제안된 융합기법이 기존의 블록기반 융합기법과 비교하여 분광왜곡을 최소화시킬 수 있음을 확인하였다. 이를 통해, 향후 발사될 다양한 초분광 위성 및 항공기 초분광 센서의 활용을 증대시킬 수 있을 것으로 판단된다.

Absolute Atmospheric Correction Procedure for the EO-1 Hyperion Data Using MODTRAN Code

  • Kim, Sun-Hwa;Kang, Sung-Jin;Chi, Jun-Hwa;Lee, Kyu-Sung
    • 대한원격탐사학회지
    • /
    • 제23권1호
    • /
    • pp.7-14
    • /
    • 2007
  • Atmospheric correction is one of critical procedures to extract quantitative information related to biophysical variables from hyperspectral imagery. Most atmospheric correction algorithms developed for hyperspectral data have been based upon atmospheric radiative transfer (RT) codes, such as MODTRAN. Because of the difficulty in acquisition of atmospheric data at the time of image capture, the complexity of RT model, and large volume of hyperspectral data, atmospheric correction can be very difficult and time-consuming processing. In this study, we attempted to develop an efficient method for the atmospheric correction of EO-1 Hyperion data. This method uses the pre-calculated look-up-table (LUT) for fast and simple processing. The pre-calculated LUT was generated by successive running of MODTRAN model with several input parameters related to solar and sensor geometry, radiometric specification of sensor, and atmospheric condition. Atmospheric water vapour contents image was generated directly from a few absorption bands of Hyperion data themselves and used one of input parameters. This new atmospheric correction method was tested on the Hyperion data acquired on June 3, 2001 over Seoul area. Reflectance spectra of several known targets corresponded with the typical pattern of spectral reflectance on the atmospherically corrected Hyperion image, although further improvement to reduce sensor noise is necessary.

토지피복지도 제작을 위한 초분광 영상 EO-1 Hyperion의 최적밴드 선택기법 연구 (A Study on the EO-1 Hyperion's Optimized Band Selection Method for Land Cover/Land Use Map)

  • 장세진;이호남;김진광;채옥삼
    • 한국측량학회지
    • /
    • 제24권3호
    • /
    • pp.289-297
    • /
    • 2006
  • 토지피복지도는 토지의 피복특성과 토지활용특성을 나타내는 자료로서 토지피복분류체계에 따라 계층적인 구조로 1998년부터 제작되고 있다. 대분류는 Landsat 위성영상을 활용하여 남 북한에 대한 작업이 완료되었으며, 중분류는 IRS-1C, IRS-1D, KOMPSAT, SPOT-5 영상을 저해상 컬러 영상과 영상융합을 한 후, 그 결과자료를 전문가가 도화하여 제작하고 있다. 특히 도화에 의한 중분류 토지피복지도 제작은 위성영상의 구매 및 자료처리, 토지피복 지도제작 과정에서 막대한 비용이 필요하다. 본 논문에서는 최근 많은 연구가 수행되고 있는 초분광 위성영상인 EO-1 Hyperion을 이용한 중분류 토지피복지도 제작 가능성을 연구했다. 많은 분광정보를 제공하는 Hyperion 영상과 기존에 사용하던 Landsat-7 ETM+ 영상의 토지피복분류 비교 연구를 수행하여 Hyperion의 분류정확도를 평가했다. 또한, Hyperion에 적합한 최적밴드선택 방법을 통하여 초분광 위성영상 활용의 효율성을 증대시켰다.

Spectral Classification of Man-made Materials in Urban Area Using Hyperspectral Data

  • Kim S. H.;Kook M. J.;Lee K. S.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.10-13
    • /
    • 2004
  • Hyperspectral data has a great advantage to classify various surface materials that are spectrally similar. In this study, we attempted to classify man-made materials in urban area using Hyperion data. Hyperion imagery of Seoul was initially processed to minimize radiometric distortions caused by sensor and atmosphere. Using color aerial photographs. we defined seven man-made surfaces (concrete, asphalt road. railroad, buildings, roof, soil, shadow) for the classification in Seoul. The hyperspectral data showed the potential to identify those manmade materials that were difficult to be classified by multispectral data. However. the classification of road and buildings was not quite satisfactory due to the relatively low spatial resolution of Hyperion image. Further, the low radiometric quality of Hyperion sensor was another limitation for the application in urban area.

  • PDF

IKONOS 영상을 이용한 EO-1 Hyperion Hyperspectral 영상자료의 고해상도 구축 (High Resolution Reconstruction of EO-1 Hyperion Hyperspectral Images Using IKONOS Images)

  • 이상훈
    • 대한원격탐사학회지
    • /
    • 제24권6호
    • /
    • pp.631-639
    • /
    • 2008
  • 본 연구에서는 상업용 위성에 탑재된 센서에서 감지된 고해상도의 범색 영상과 다중분광 영상을 이용하여 저해상도의 초분광 영상을 고해상도로 재구축하는 방법을 IKONOS영상과 30-1의 Hyperion 영상에 대한 적용을 통하여 제시하고 있다. 제안된 초분광 영상의 고해상도 재구축은 Lee(2008b)에 의해 개발된 FitPAN-Mod를 기반으로 하여 30m 급의 공간해상도의 초분광 영상을 1m 급의 공간해상도의 범색 영상 수준으로 공간해 상도를 향상시킨다. 본 연구에서는 세 번의 FitPAN-Mod를 사용하는 저해상도의 영상의 고해상도 재구축 과정을 걸쳐 범색 영상의 파장구간에 속하는 초분광 영상의 50개 밴드에 대해 재구축이 이루어졌다. 실험 결과는 재구축된 영상은 시각적 평가에서 실험 대상 지역 내 범색 영상이 갖고 있는 자세한 공간적 구조를 잘 표현하고 있으며 저해상도에서 세부적 위치에 따라 구분하여 표현할 수 없는 지표면의 좁은 밴드대역의 분광특성을 잘 표현하고 있음을 보여준다. 이러한 결과는 제안된 재구축 방법이 현재의 센서 기술로 수집할 수 없는 고해상도의 초분광 영상의 대체 영상을 생성할 수 있는 기술로서 잠재력을 갖고 있음을 보여준다.

프랙탈 차원 및 Continuum Removal 기법을 이용한 Hyperion 영상의 노이즈 밴드 제거 (Noise Band Elemination of Hyperion Image using Fractal Dimension and Continuum Removal Method)

  • 장안진;김용일
    • 대한원격탐사학회지
    • /
    • 제24권2호
    • /
    • pp.125-131
    • /
    • 2008
  • Hyperion, AVIRIS 등의 초분광 영상은 기존의 다중분광 영상보다 넓은 파장대의 영상을 좁은 폭의 많은 밴드로 취득하기 때문에 다양한 분야의 연구에 이용되고 있다. 하지만 밴드별로 취득하는 파장대가 짧고 밴드수가 많아 계산량이 증가하며, 밴드간의 높은 상관관계 및 노이즈 밴드가 발생하는 한계가 존재한다. 이런 한계로 인해 기존에 알려진 분석기법의 적용결과가 제대로 도출되지 않는 경우도 발생한다. 따라서 초분광 영상을 사용할 경우, 노이즈가 포함된 밴드를 제거한 후 영상분석을 하는 것이 보다 정확하고 효율적이다. 본 연구에서는 초분광 영상(Hyperspectral Image)의 전처리 과정 중 노이즈 밴드 제거에 초점을 맞추었으며, 이를 위해 프랙탈 차원을 이용하였다. 프랙탈 차원 측정방법 중 대표적인 곡면차원 측정 방법인 삼각기둥 표면적 기법을 이용하였다. 각 밴드별 프랙탈 차원을 측정하고, 이를 정규화 하기 위해 Continuum Removal 기법을 적용한 뒤 경향을 살펴보았다. 경험적으로 구한 임계값을 통해 상대적으로 정보량이 적은 35개 밴드를 노이즈 밴드로 판단하여 제거하였다. 실험 영상으로는 EO-1 위성에서 취득되는 Hyperion 초분광 영상을 사용하였다. 실험 결과 프랙탈 차원 및 Continuum Removal 기법을 통해 Hyperion 초분광 영상의 노이즈 밴드를 추출하여 제거할 수 있음을 확인하였다.

Hyperion 영상의 분류를 위한 밴드 추출 (Feature Selection for Image Classification of Hyperion Data)

  • 한동엽;조영욱;김용일;이용웅
    • 대한원격탐사학회지
    • /
    • 제19권2호
    • /
    • pp.170-179
    • /
    • 2003
  • 다중분광 영상의 정확한 지형지물 분류를 수행할 때 고려해야 할 중요한 요소중에 적절한 분류 클래스의 선정과 선정된 클래스의 분리도가 높아지도록 트레이닝 지역(training fields)을 잡는 것은 특히 중요하다. 최근에 이용되고 있는 위성탑재 하이퍼스펙트럴(hyperspectral) 영상은 많은 밴드를 포함하고 있기 때문에 데이터 처리가 어렵고, 잡음(noise)으로 인하여 다중분광 영상보다 분류 결과가 나쁜 경우도 나타난다. 특히 대상지역의 클래스에 따른 트레이닝 지역의 선정시 일부 클래스에서 하이퍼스펙트럴 밴드수에 비해 상대적으로 적은 수의 트레이닝 샘플로 인하여 공분산 행렬의 계산에 어려움이 따른다. 따라서 본 연구에서는 Hyperion 데이터를 이용한 분류를 수행하기 위하여 밴드 추출 방식을 알아보고, 분류영상의 정확도 평가를 통하여 밴드 추출의 효용성을 시험하였다. 밴드를 줄이는 또 다른 방법인 클래스간 분리도에 따른 최적 밴드를 추출하여 분류정확도를 평가하였다. 실험 결과, 밴드 추출이나 클래스 분리도에 따라 선택된 영상의 분류 정확도는 분류자(classifier)에 상관없이 전체 밴드를 사용한 원영상과 유사하게 나타났지만, 사용된 밴드수와 계산 시간은 단축되었다. 분류자는 MLC, SAM, ECHO의 3종류가 사용되었다.

A Correction Approach to Bidirectional Effects of EO-1 Hyperion Data for Forest Classification

  • Park, Seung-Hwan;Kim, Choen
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.1470-1472
    • /
    • 2003
  • Hyperion, as hyperspectral data, is carried on NASA’s EO-1 satellite, can be used in more subtle discrimination on forest cover, with 224 band in 360 ?2580 nm (10nm interval). In this study, Hyperion image is used to investigate the effects of topography on the classification of forest cover, and to assess whether the topographic correction improves the discrimination of species units for practical forest mapping. A publicly available Digital Elevation Model (DEM), at a scale of 1:25,000, is used to model the radiance variation on forest, considering MSR(Mean Spectral Ratio) on antithesis aspects. Hyperion, as hyperspectral data, is corrected on a pixel-by-pixel basis to normalize the scene to a uniform solar illumination and viewing geometry. As a result, the approach on topographic effect normalization in hyperspectral data can effectively reduce the variation in detected radiance due to changes in forest illumination, progress the classification of forest cover.

  • PDF

Quadtree 구조 및 프랙탈 특성을 이용한 Hyperion 영상의 노이즈 밴드 추출 (Noise Band Extraction of Hyperion Image using Quadtree Structure and Fractal Characteristic)

  • 장안진;김용일
    • 대한원격탐사학회지
    • /
    • 제26권5호
    • /
    • pp.489-495
    • /
    • 2010
  • 초분광 영상은 넓은 범위의 파장 영역의 유용한 정보를 많은 수의 밴드를 통해 취득한다. 하지만, 인접 밴드 간의 상관관계, 계산량, 노이즈로 인해 전처리없이 활용할 경우 부정확한 결과를 도출한다. 따라서 영상에서 노이즈 밴드 추출하여 제거하는 작업이 반드시 필요하다. 기존의 연구들은 영상 전체에 대한 특성치 만을 이용하였기 때문에 영상의 국지적 특성을 고려해야 한다. 본 연구에서는 Hyperion 영상을 대상으로 하였으며, 자료구조 기법 중 하나인 Quadtree와 이용하여 노이즈 밴드를 추출하였다. Quadtree 구조로 분할된 영역의 프랙탈 차원을 계산하고 프랙탈 차원의 분산을 이용하였다. Hyperion 영상에 존재하는 노이즈 종류 중 무작위 노이즈를 포함하고 있는 밴드 추출에 초점을 맞추었으며, 시각적으로 판단하여 작성한 참조자료와 비교하였다. 제안된 알고리즘 적용 결과 무작위 노이즈가 포함된 밴드 대부분이 추출되었으며, 영상에 관계없이 30개 이상의 노이즈 밴드를 제거할 수 있음을 확인하였다.

DEVELOPMENT OF ATMOSPHERIC CORRECTION ALGORITHM FOR HYPERSPECTRAL DATA USING MODTRAN MODEL

  • Kim, Sun-Hwa;Kang, Sung-Jin;Ji, Jun-Hwa;Lee, Kyu-Sung
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume II
    • /
    • pp.619-622
    • /
    • 2006
  • Atmospheric correction is one of critical procedures to extract quantitative information related to biophysical variables from hyperspectral data. In this study, we attempted to generate the water vapor contents image from hyperspectral data itself and developed the atmospheric correction algorithm for EO-1 Hyperion data using pre-calculated atmospheric look-up-table (LUT) for fast processing. To apply the new atmospheric correction algorithm, Hyperion data acquired June 3, 2001 over Seoul area is used. Reflectance spectrums of various targets on atmospheric corrected Hyperion reflectance images showed the general spectral pattern although there must be further development to reduce the spectral noise.

  • PDF