• Title/Summary/Keyword: Hypereutectic Al-Si

Search Result 61, Processing Time 0.024 seconds

A study on the mirror like machining of Al-Si alloy for extraction of Si particle (Al-Si합금의 Si석출 경면가공에 관한 연구)

  • 이은상;김정두
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.12
    • /
    • pp.2279-2286
    • /
    • 1992
  • A hypereutectic Aluminum-Silicon Alloy is widely used in the parts of autombile because of high-resistance and good strength. In this study, the cutting of a hypereutectic Al-Si alloy (A390) for extraction of Si particle was experimentally investigated. By proper selection of cutting tool materials and optimization of cutting conditions, economical machining of this alloy is achieved. The surface roughness relates closely with the feed rate and cutting speed.

A study on the economics of hypereutectic Al-Si alloy cutting with single crystal diamond tool (단결정 다이아몬드 절삭에 의한 과공정 Al-Si합금의 경제성에 관한 연구)

  • 이은상;김정두
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1096-1105
    • /
    • 1994
  • A hypereutectic Aluminum-Silicon Alloy is widely used in the parts of automobile because of high-resistance and good strength. In this study, the cutting of hypereutectic A1-Si alloy for economical production was investigated by simulation. Tool life and the extraction rate of Si particles is inversely proportional to the depth of cut. When decreasing the depth of cut, the reduction of single crystal diamond tool cost and tool change time is achieved.

$\alpha$-halo formation in semi-solid state processed hypereutectic Al-Si alloy (반고상 가공과 공정 Al-Si 합금에서 $\alpha$-halo의 형성)

  • 김인준;김도향
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.06a
    • /
    • pp.183-195
    • /
    • 1997
  • The micorstructural characteristics, particularly $\alpha$-halo formation, in semi-solid state processed hypereutectic Al-Si alloy was investigated. The microstructural changes during reheating of wedge type mold cast ingot, hot-rolled sheet, and Si particulate reinforced Al composite was compared with those occurred during stirring of semi-solid state hypereutectic alloy. In the case of semi-solid state reheating of wedge type ingot and hot-rolled sheet, fine particles of Si as well as $\alpha$-halo formed after heat treatment. Although there seemed to be no coarsening with variations of holding time, the region of $\alpha$-halo decreased due to homogenization. Nucleation and recrystallization was accelerated with the addition of alloying elements during hot rolling resulting in primary Si particle size decrease and $\alpha$-halo formation. In the case of extruded specimens, very little morphological change of reinforcing Si particles was observed. Almost no $\alpha$-halo formed during reheating because of the oxide film formed on the reinforcing Si particles which acted as a diffusion barrier between the matrix and the primary Si particles.

  • PDF

Effect of TiC and AlN on the Wear Behavior and Mechanical Properties of Hypereutectic Al-Si Alloys (과공정 Al-Si 합금의 마모 거동과 기계적 성질에 미치는 TiC와 AlN의 영향)

  • Ju, Seung Hwan;Choi, Jin Myung;Kim, Yong Jin;Park, Ik Min;Park, Yong Ho
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.11
    • /
    • pp.1003-1008
    • /
    • 2010
  • In this study, the effect of the reinforcement on the wear behaviour and mechanical properties of hypereutectic Al-Si alloys was investigated. The Gas atomized hypereutectic Al-20Si alloy powders were mixed with 1, 3, and 5 wt.% AlN and TiC ceramic particles and consolidated by hotpress. The Al-20Si powder has both finely dispersed primary Si phases and eutectic structures. The Al-20Si-AlN, TiC composites showed that the reinforcements were distributed along the boundary of the Al-20Si alloy. The UTS increased with increasing the AlN, TiC contents. At a lower load, with an increasing weight fraction of reinforcements, the wear rate decreased in both composites and the wear mechanism was adhesive wear. At a higher load, the shape of the debris changes the mechanism of the AlN composites to abrasive-adhesion wear and this resulted in an increase of the wear rate.

Effects of Average Power on Laser Cladding of Hypereutectic Al-Si Alloy on Al 1050 Alloy (Al 1050 합금에 과공정 Al-Si 합금의 레이저 클래딩에서 평균출력의 영향에 대한 연구)

  • Lee, Hyoung-Keun
    • Journal of Welding and Joining
    • /
    • v.29 no.2
    • /
    • pp.88-93
    • /
    • 2011
  • This study produced hypereutectic Al-Si clad layer on 1050 Al alloy by a novel laser cladding method. Pure Si powder was mixed with organic binder to make fluid paste which could be screen-printed on the 1050 Al alloy plate. Pulsed Nd:YAG laser was irradiated on the Si paste layer to melt and alloy with Al substrate. Different laser power of 99 W, 179 W and 261 W, was used to see the difference of the microstructure, composition and hardness of the clad layers. When laser power of 179 W was used, the clad layer had overall Si content of 38wt% and composed of fine primary Si particles and fine eutectic phase. At laser power of 261 W, the clad layer had overall Si content of 24wt% and composed of mainly fine eutectic phase. Vickers hardness of HV176.7 and HV150.3 on the clad layer was obtained at laser power of 179 W and 261 W, respectively.

Fabrication and Properties of High Strength Hypereutectic AI-Si Powders by a Gas Atomization Process II. Extrusion and Mechanical Properties (가스분무 공정에 의한 고강도 과공정 AI-Si 합금 분말의 제조 및 특성연구 II. 압출재 제조 및 기계적 특성)

  • Kim, Yong-Jin;Kim, Jin-Chun
    • Journal of Powder Materials
    • /
    • v.15 no.2
    • /
    • pp.142-147
    • /
    • 2008
  • The hypereutectic Al-20 wt%Si powders including some amount of Cu, Fe, Mg, Mn were prepared by a gas atomization process. In order to get highly densified Al-Si bulk specimens, the as-atomized and sieved powders were extruded at $500^{\circ}C$, Microstructure and tensile properties of the extruded Al-Si alloys were investigated in this study. Relative density of the extruded samples was over 98%. Ultimate tensile strength (UTS) in stress-strain curves of the extruded powders increased after T6 heat treatments. Elongation of the samples was also increased from 1.4% to 3.2%. The fracture surfaces of the tested pieces showed a fine microstructure and the average grain size was about $1{\mu}m$.

Mechanical Characteristics and Microstructures of Hypereutectic Al-17Si-5Fe Extruded Alloys Prepared by Rapid Solidification Process (급속응고법으로 제조한 과공정 Al-17Si-5Fe 합금 압출재의 미세조직 및 기계적 특성)

  • KIM, Tae-Jun;LEE, Se-dong;BECK, Ah-Ruem;KIM, Duck-Hyun;LIM, Su-Gun
    • Journal of Korea Foundry Society
    • /
    • v.39 no.2
    • /
    • pp.26-31
    • /
    • 2019
  • In this study, the mechanical characteristics and microstructure of hypereutectic Al-17Si-5Fe extruded alloys prepared by a rapid solidification process (RSP) were investigated. The hypereutectic Al alloy was fabricated by means of RSP and permanent casting. For RSP, the Al alloy melted at $920^{\circ}C$, cooling the specimens at a rate of $10^6^{\circ}C/s$ when the RSP was used, thus allowing the refining of primary Si particles more than when using permanent casting, at a rate of about 91%. We tested an extrusion RSP billet and a permanent-cast billet. Before the hot-extrusion process, heating to $450^{\circ}C$ took place for one hour. The samples were then hotextruded with a condition of extrusion ratio of 27 and a ram speed of 0.5 mm/s. Microstructural analyses of the extruded RSP method and the permanent casting method were carried out with OM and SEM-EDS mapping. The mechanical properties in both cases were evaluated by Vickers micro-hardness, wear resistance and tensile tests. It was found that when hypereutectic Al-17Si-5Fe alloys were fabricated by a rapid solidification method, it becomes possible to refine Si and intermetallic compounds. During the preparation of the hypereutectic Al-17Si-5Fe alloy by the rapid solidification method, the pressure of the melting crucible was low, and at faster drum speeds, smaller grain alloy flakes could be produced. Hot extrusion of the hypereutectic Al-17Si-5Fe alloy during the rapid solidification method required higher pressure levels than hot extrusion of the permanent mold-casted alloy. However, it was possible to produce an extruded material with a better surface than that of the hot extruded material processed by permanent mold casting.

Microstructural changes during semi-solid state processing of hypereutectic Al-Si alloys (고액공존 과공정 Al-Si합금의 교반응고시 미세조직변화)

  • Ryoo, Young-Ho;Kim, Do-Hyang
    • Journal of Korea Foundry Society
    • /
    • v.15 no.5
    • /
    • pp.483-493
    • /
    • 1995
  • The microstructural changes during semi-solid state processing of hypereutectic Al-Si alloy has been investigated in the present study. Stirring of semi-solid slurry results in the morphological changes of the primary Si particles, i.e. from angular rod shape to near-spherical shape. Besides the spherodization of primary Si particles, the average particle size increases, especially, at much higher rate in the final stage than that in the early stage of stirring. Various microstructure characterization techniques, such as anisotropic etching, SEM imaging and ECP analysis, reveal that the spherodization of primary Si particles occurs by the combinations of the mechanisms of coalescence, fracture, and wear of the individual particles. Isothermal shearing of hypereutectic Al-Si at $580^{\circ}C$ shows that spherical ${\alpha}-Al$ particles are formed by the dissociation of Al-Si eutectic structure at the early stage of isothermal shearing. The spherical ${\alpha}-Al$ particles gradually grow by the mechanisms of Ostwald ripening and coalescence of the particles.

  • PDF

Deformation Behavior of Spray-formed Hypereutectic Al-Si Alloys (분무성형을 통해 제조된 과공정 Al-Si 합금의 기계적 특성)

  • Park W. J.;Ha T. K.;Ahn S.;Chang Y. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.285-288
    • /
    • 2001
  • Hypereutectic Al-25Si-X alloys, expected to be applied to the cylinder-liner-part of the engine-block of an automobile due to the excellent wear resistance, low density and low thermal expansion coefficient has been fabricated through a spray forming process. The obtained microstructure of the hypereutectic Al-25Si-X alloy appeared to consist of Al matrix and equiaxed Si particles of average diameter of $5-7{\mu}m$. To characterize the deformation behavior of this alloy, a series of load relaxation and compression tests have been conducted at temperatures ranging from RT to $500^{\circ}C$. The strain rate sensitivity parameter (m) of this alloy has been found to be very low (0.1) below foot and reached 0.2 at $500^{\circ}C$. During the deformation above 300'c in compression, strain softening has been observed. The diagram of extrusion pressure vs. ram-speed has been constructed, providing the extrusion condition of Al-25Si-X alloys.

  • PDF

A Study on the Mechanical and Thermal Properties of Spray-cast Hypereutectic Al-Si-Fe Alloys (분사주조한 과공정 Al-Si-Fe 합금의 기계적 및 열적 특성에 관한 고찰)

  • Park, Jae-Sung;Ryou, Min;Yoon, Eui-Pak;Yoon, Woo-Young;Kim, Kwon-Hee;Kim, Myung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.26 no.3
    • /
    • pp.123-128
    • /
    • 2006
  • Mechanical and thermal properties of spray-cast hypereutectic Al-20wt.%Si-xwt.%Fe alloys (x=0, 1, 3, 5) were investigated. After the spray-casting, hot extrusion was performed at $400^{\circ}C$. Intermetallic compound (${\beta}-Al_5FeSi$) and primary Si are observed in the spray-cast aluminum alloys. The size of primary Si and intermetallic compound of the spray-aluminum alloys became finer and more uniformly distributed than that of the permanent mold cast ones. Ultimate tensile strength of the spray-cast aluminum alloys increased by increasing Fe contents, but that of the permanent mold cast aluminum alloys decreased by increasing Fe contents possibly due to increased amount of coarse intermatallic compound. The coefficient of thermal expansion (CTEs) of the aluminum alloys became lower with finer primary Si and intermetallic compound, and this is attributed to the increased amount of interfacial area between the aluminum matrix and the phases of finer Si and intermetallic compound.