• Title/Summary/Keyword: Hyperbolic mirror

Search Result 12, Processing Time 0.015 seconds

Research on the Solar Concentrating Optical System for Solar Energy Utilization

  • Duan, Yimeng;Yang, Huajun;Jiang, Ping;Wang, Ping
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.5
    • /
    • pp.371-375
    • /
    • 2013
  • To improve the utilization efficiency of solar energy, a new solar optical concentrating system composed of a parabolic reflector with a square cross-section, a hyperbolic reflector with a square cross-section and two converging convex lenses has been designed. The proposed method can simultaneously focus and shape sun light into a square pattern on the solar panel. In addition, the total reflection property of photonic crystal within the range of the visible sunlight spectrum has been analyzed. Finally, the relationship between solar concentrating multiples and the diameter of the primary mirror has been discussed.

Prediction Method for Moisture-release Surface Deformation of a Large Mirror in the Space Environment (우주환경에서 대형 반사경의 습기 방출에 의한 형상 변화 예측방법)

  • Song, In-Ung;Yang, Ho-Soon;Khim, Hagyong;Kim, Seong-Hui;Lee, Hoi-Yoon;Kim, Sug-Whan
    • Korean Journal of Optics and Photonics
    • /
    • v.29 no.4
    • /
    • pp.166-172
    • /
    • 2018
  • In this paper, we propose a new method to predict a mirror's surface deformation due to the stress of moisture release by a coating in the environment of outer space. We measured the surface deformation of circular samples 50 mm in diameter and 1.03 mm thick, using an interferometer. The results were analyzed using Zernike fringe polynomials. The coating stress caused by moisture release was calculated to be 152.7 MPa. This value was applied to an analytic model of a 1.25 mm thickness sample mirror, confirming that the change of surface deformation could be predicted within the standard deviation of the measurement result ($78.9{\pm}5.9nm$). Using this methodology, we predicted the surface deformation of 600 mm hyperbolic mirror for the Compact Advanced Satellite, which will be launched in 2019. The result is only $2.005{\mu}m$ of focal shift, leading to 2.3% degradation of modulation transfer function (MTF) at the Nyquist frequency, which satisfies the requirement.