• Title/Summary/Keyword: Hyperbolic Model

Search Result 284, Processing Time 0.026 seconds

A Study on the Settlement Prediction of Soft Ground Embankment Using Artificial Neural Network (인공신경망을 이용한 연약지반성토의 침하예측 연구)

  • Kim, Dong-Sik;Chae, Young-Su;Kim, Young-Su;Kim, Hyun-Dong
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.7
    • /
    • pp.17-25
    • /
    • 2007
  • Various geotechnical problems due to insufficient bearing capacity or excessive settlement are likely to occur when constructing roads or large complexes on soft ground. Accurate predictions of the magnitude of settlement and the consolidation time provide numerous options of ground improvement methods and, thus, enable to save time and expense of the whole project. Asaoka's method is probably the most frequently used one for settlement prediction and the empirical formulae such as Hyperbolic method and Hoshino's method are also often used. To find an elaborate method of predicting the embankment settlement, two recurrent type neural network models, such as Jordan model and Elman-Jordan model, are adopted. The data sets of settlement measured at several domestic sites are analyzed to obtain the most suitable model structures. It was shown from the comparison between predicted and measured settlements that Jordan model provides better predictions than Elman-Jordan model does and that the predictions using CPT results are more accurate than those using SPT results. It is believed that RNN using cone penetration test results can be a highly efficient tool in predicting settlements if enough field data can be obtained.

Development and Assessment for Resilient Modulus Prediction Model of Railroad Trackbeds Based on Modulus Reduction Curve (탄성계수 감소곡선에 근거한 철도노반의 회복탄성계수 모델 개발 및 평가)

  • Park, Chul Soo;Hwang, Seon Keun;Choi, Chan Yong;Mok, Young Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2C
    • /
    • pp.71-79
    • /
    • 2009
  • This study is to develope the resilient modulus prediction model, which is the function of mean effective principal stress and axial strain, for three types of railroad trackbed materials such as crushed stone, weathered granite soil, and crushed-rock soil mixture. The model consists of the maximum Young's modulus and nonlinear values for higher strain, analogous to dynamic shear modulus. The maximum value is modeled by model parameters, $A_E$ and the power of mean effective principal stress, $n_E$. The nonlinear portion is represented by modified hyperbolic model, with the model parameters of reference strain, ${\varepsilon}_r$ and curvature coefficient, a. To assess the performance of the prediction models proposed herein, the elastic response of a test trackbed near PyeongTaek, Korea, was evaluated using a 3-D elastic multilayer computer program (GEOTRACK). The results were compared with measured elastic vertical displacement during the passages of freight and passenger trains at two locations, whose sub-ballasts were crushed stone and weathered granite soil, respectively. The calculated vertical displacements of the sub-ballasts are within the order of 0.6mm, and agree well with measured values. The prediction models are thus concluded to work properly in the preliminary investigation.

Modified Thermal-divergence Model for a High-power Laser Diode (고출력 레이저 다이오드 광원의 열저항 개선을 위한 하부층 두께 의존성 수정 모델)

  • Yong, Hyeon Joong;Baek, Young Jae;Yu, Dong Il;O, Beom Hoan
    • Korean Journal of Optics and Photonics
    • /
    • v.30 no.5
    • /
    • pp.193-196
    • /
    • 2019
  • The design and control of thermal flow is important for the operation of high-power laser diodes (LDs). It is necessary to analyze and improve the thermal bottleneck near the active layer of an LD. As the error in prediction of the thermal resistance of an LD is large, typically due to the hyperbolic increase and saturation to linear increase of the thermal resistance as a function of thickness, it is helpful to use a simple, modified divergence model for the improvement and optimization of thermal resistance. The characteristics of LDs are described quite well, in that the values for simulated thermal resistance curves and the thermal cross section followed are almost the same as the values from the model function. Also, the thermal-cross-section curve obtained by differentiating the thermal resistance is good for identifying thermal bottlenecks intuitively, and is also fitted quite well by the model proposed for both a typical LD structure and an improved LD with thin capping and high thermal conductivity.

Distribution of Vertical Earth Pressure due to Surcharge Loads Acting on Cantilever Retaining Wall Near Rigid Slope (강성경사면에 인접한 역T형 옹벽에 작용하는 상재하중에 의한 연직토압분포)

  • 유남재;이명욱;박병수;홍영길
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.6
    • /
    • pp.141-152
    • /
    • 2002
  • This paper is the result of the experimental and numerical research on the distribution of vertical earth pressure due to surcharge loads acting on cantilever retaining wall close to a rigid slope with a stiff angle. Centrifuge model experiments were performed with changing the roughness of adjacent slope to the wall, distance between the wall and the slope and gravitational levels. Vertical earth pressures were measured by earth cells embedded in the backfill of the wall. Test results of vertical earth pressures due to surcharge loads were compared with theoretical estimations by using two different methods of limit equilibrium and the numerical analysis. For limit equilibrium methods, the modified silo and the wedge theories, proposed by Chung(1993, 1997), were used to analyze test results. Based on those modified theories, the particular solution with the boundary condition of surcharge loads on the surface of backfill was obtained to find the vertical stress distributions acting on the backfill. FLAC with the hyperbolic constitutive model was also used for the numerical estimation. As a result of comparison of test results with theoretical and numerical estimations, distribution of vertical earth pressures obtained from centrifuge model tests is generally in good agreement with numerical estmated values by using FLAC whereas the wedge theory shows values close to test results in case the distance between the wall and the slope is narrow.

Interface Capturing for Immiscible Two-phase Fluid Flows by THINC Method (THINC법을 이용한 비혼합 혼상류의 경계면 추적)

  • Lee, Kwang-Ho;Kim, Kyu-Han;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.4
    • /
    • pp.277-286
    • /
    • 2012
  • In the numerical simulation of wave fields using a multi-phase flow model that considers simultaneous flows of materials with different states such as gas, liquid and solid, there is need of an accurate representation of the interface separating the fluids. We adopted an algebraic interface capturing method called tangent of hyperbola for interface-capturing(THINC) method for the capture of the free-surface in computations of multi-phase flow simulations instead of geometrical-type methods such a volume of fluid(VOF) method. The THINC method uses a hyperbolic tangent functions to represent the surface, and compute the numerical flux for the fluid fraction functions. One of the remarkable advantages of THINC method is its easy applicability to incorporate various numerical codes based on Navier-Stokes solver because it does not require the extra geometric reconstruction needed in most of VOF-type methods. Several tests were carried out in order to investigate the advection of interfaces and to verify the applicability of the THINC method to wave fields based on the one-field model for immiscible two-phase flows (TWOPM). The numerical results revealed that the THINC method is able to track the interface between air and water separating the fluids although its algorithm is fairly simple.

Study on the Estimation of Duncan & Chang Model Parameters-initial Tangent Modulus and Ultimate Deviator Stress for Compacted Weathered Soil (다짐 풍화토의 Duncan & Chang 모델 매개변수-초기접선계수와 극한축차응력 산정에 관한 연구)

  • Yoo, Kunsun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.12
    • /
    • pp.47-58
    • /
    • 2018
  • Duncan & Chang(1970) proposed the Duncan-Chang model that a linear relation of transformed stress-strain plots was reconstituted from a nonlinear relation of stress-strain curve of triaxial compression test using hyperbolic theory so as to estimate an initial tangent modulus and ultimate deviator stress for the soil specimen. Although the transformed stress-strain plots show a linear relationship theoretically, they actually show a nonlinearity at both low and high values of strain of the test. This phenomenon indicates that the stress-strain curve is not a complete form of a hyperbola. So, if linear regression analyses for the transformed stress-strain plot are performed over a full range of strain of a test, error in the estimation of their linear equations is unavoidable depending on ranges of strain with non-linearity. In order to reduce such an error, a modified regression analysis method is proposed in this study, in which linear regression analyses for transformed stress-strain plots are performed over the entire range of strain except the range the non-linearity is shown around starting and ending of the test, and then the initial tangent modulus and ultimate deviator stresses are calculated. Isotropically consolidated-drained triaxial compression tests were performed on compacted weathered soil with a modified Proctor density to obtain their model parameters. The modified regression analyses for transformed stress-strain plots were performed and analyzed results are compared with results estimated by 2 points method (Duncan et al., 1980). As a result of analyses, initial tangent moduli are about 4.0% higher and ultimate deviator stresses are about 2.9% lower than those values estimated by Duncan's 2 points method.

Free vibration analysis of functionally graded plates with temperature-dependent properties using various four variable refined plate theories

  • Attia, Amina;Tounsi, Abdelouahed;Bedia, E.A. Adda;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.18 no.1
    • /
    • pp.187-212
    • /
    • 2015
  • In this paper, various four variable refined plate theories are presented to analyze vibration of temperature-dependent functionally graded (FG) plates. By dividing the transverse displacement into bending and shear parts, the number of unknowns and governing equations for the present model is reduced, significantly facilitating engineering analysis. These theories account for parabolic, sinusoidal, hyperbolic, and exponential distributions of the transverse shear strains and satisfy the zero traction boundary conditions on the surfaces of the plate without using shear correction factors. Power law material properties and linear steady-state thermal loads are assumed to be graded along the thickness. Uniform, linear, nonlinear and sinusoidal thermal conditions are imposed at the upper and lower surface for simply supported FG plates. Equations of motion are derived from Hamilton's principle. Analytical solutions for the free vibration analysis are obtained based on Fourier series that satisfy the boundary conditions (Navier's method). Non-dimensional results are compared for temperature-dependent and temperature-independent FG plates and validated with known results in the literature. Numerical investigation is conducted to show the effect of material composition, plate geometry, and temperature fields on the vibration characteristics. It can be concluded that the present theories are not only accurate but also simple in predicting the free vibration responses of temperature-dependent FG plates.

Novel quasi-3D and 2D shear deformation theories for bending and free vibration analysis of FGM plates

  • Younsi, Abderahman;Tounsi, Abdelouahed;Zaoui, Fatima Zohra;Bousahla, Abdelmoumen Anis;Mahmoud, S.R.
    • Geomechanics and Engineering
    • /
    • v.14 no.6
    • /
    • pp.519-532
    • /
    • 2018
  • In this work, two dimensional (2D) and quasi three-dimensional (quasi-3D) HSDTs are proposed for bending and free vibration investigation of functionally graded (FG) plates using hyperbolic shape function. Unlike the existing HSDT, the proposed theories have a novel displacement field which include undetermined integral terms and contains fewer unknowns. The material properties of the plate is inhomogeneous and are considered to vary continuously in the thickness direction by three different distributions; power-law, exponential and Mori-Tanaka model, in terms of the volume fractions of the constituents. The governing equations which consider the effects of both transverse shear and thickness stretching are determined through the Hamilton's principle. The closed form solutions are deduced by employing Navier method and then fundamental frequencies are obtained by solving the results of eigenvalue problems. In-plane stress components have been determined by the constitutive equations of composite plates. The transverse stress components have been determined by integrating the 3D stress equilibrium equations in the thickness direction of the FG plate. The accuracy of the present formulation is demonstrated by comparisons with the different 2D, 3D and quasi-3D solutions available in the literature.

Development of a Simplified Treatment Technique of Partial Wave Reflection and Transmission for Mild-Slope Wave Model (완경사 방정식에서의 간편화된 파의 부분 반사 및 투과 처리기법)

  • Chun Je-Ho;Ahn Kyung-Mo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.1
    • /
    • pp.84-96
    • /
    • 2006
  • This paper presents a simplified numerical method that can be used to incorporate the partial reflection and transmission of water waves in the hyperbolic mild-slope equation. For given reflection and transmission coefficients, wave fields around a porous breakwater including reflection, transmission, and diffraction can be simulated accurately. For the verification of the proposed method, numerical experiments have been carried out and compared with analytic solutions given by Yu(1995) and McIver(1999). The proposed method is easy to implement and is computationally efficient. It is demonstrated that the method performs well with a sloping bottom bathymetry and varying incident wave angles.

Bending analysis of functionally graded thick plates with in-plane stiffness variation

  • Mazari, Ali;Attia, Amina;Sekkal, Mohamed;Kaci, Abdelhakim;Tounsi, Abdelouahed;Bousahla, Abdelmoumen Anis;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.68 no.4
    • /
    • pp.409-421
    • /
    • 2018
  • In the present paper, functionally graded (FG) materials are presented to investigate the bending analysis of simply supported plates. It is assumed that the material properties of the plate vary through their length according to the power-law form. The displacement field of the present model is selected based on quasi-3D hyperbolic shear deformation theory. By splitting the deflection into bending, shear and stretching parts, the number of unknowns and equations of motion of the present formulation is reduced and hence makes them simple to use. Governing equations are derived from the principle of virtual displacements. Numerical results for deflections and stresses of powerly graded plates under simply supported boundary conditions are presented. The accuracy of the present formulation is demonstrated by comparing the computed results with those available in the literature. As conclusion, this theory is as accurate as other shear deformation theories and so it becomes more attractive due to smaller number of unknowns. Some numerical results are provided to examine the effects of the material gradation, shear deformation on the static behavior of FG plates with variation of material stiffness through their length.