Digital 지진계와 고성능 지오폰을 사용해서 고해상 지진파 탐사를 수행한다. 미소단층, 파쇄대, 균열대, 공동과 같은 지하구조를 탐지하기 위해서는 탐지목표물의 수평, 수직 고해상도를 올리는 것이 중요하다. 즉 Nyquist주파수는 기록지의 최고 주파수보다 커야 하고 또한 최고파수는 Nyquist파수($1/2{\Delta}x$)를 초과해서는 안된다. 최고 주파수는 저주파 통과 필터 혹은 Anit-alias 필터를 이용해서 제거되고 최고파수는 지오폰 간격 ${\Delta}x$를 조절해서 제외시킬 수 있다. 공통 발파 거리와 Single-end Shooting 방법에 의해서 얻어진 지진기록지는 적절한 최적간격, 저주파와 고주파 통과 필터, 그리고 지오폰 간격(0.5m~2m)을 이용해서 고해상도를 얻는다. 터널 상부 지표에서 Single-end Shooting에 의해서 획득한 반사지진파 기록지는 쌍곡선형의 Fraunhofer회절이 생기는 것을 볼 수 있다. 공통발파 기록에서는 터널을 통과한 초동이 낮은 진폭으로 감쇠되었고 공동에 의한 반사파는 지연된 단순 충격 파형(Single Impulsive Wave-form)임을 보여 준다. Cherveny와 Psencik(1983)의 Ray Method에 의한 이론적 결과도 실측 결과와 유사함을 알 수 있다. 즉 터널을 통과한 지진파는 지연되었고 반사된 파도 낮은 속도때문에 지연되어서 나오나 공동과 암석의 큰 음향 임피던스(Acoustic Impedance)는 강한 단순 충격파형을 보여주었다.
본 시험은 2010년 경상북도 농업기술원 벼 시험재배 포장에서 잡초발생 예찰 시스템 구축의 일환으로 최근 담수 직파답이 늘어나면서 벼 재배시 문제잡초인 피와 너도방동사니를 대상으로 잡초 밀도별 벼와의 경합력을 구명하고 Rectangular hyperbola 모델을 기초로 잡초의 밀도에 따른 쌀 수량 감소를 예측하고 경제적인 방제 필요수준을 구명하고자 본 시험을 실시하게 되었다. 피와 벼와의 밀도 경합에 따른 쌀수량 예측식은 y=507kg/(1+0.001734x), $R^2$=0.867이고, 너도방동사니는 y=560kg/(1+0.001883x), $R^2$=0.933으로 나타났다. 표 6은 재료 및 방법에 제시한 바와 같이 Cousens(1987)에 의해 개발된 계산식(2)을 이용하여 벼와 잡초와의 경합에 있어서 당해연도 경제적 한계 허용밀도를 산출하여 나타내었다. 그 결과, 제초제 구입비용은 ha당 150,280원(2010년)이었고, 제초제를 살포하는데 소요되는 인건비 등은 ha당 99,360원, 쌀의 kg당 가격은 1,605원, 제초제의 방제가는 95%로 적용하였을 때 경제적 한계 허용 밀도는 잡초 완전 방제시 쌀 수량이 5.07톤이고 1본당 수량 감수 정도가 0.001734인 피는 평방미터당 2.3본, 잡초 완전 방제시 쌀 수량이 5.60톤이고 1본당 수량 감수 정도가 0.001883인 너도방동사니는 평방미터당 15.5본이었다. 이와 같은 결과로 볼때 잡초의 벼에 대한 경합력이 높을수록 경제적 한계 허용 밀도의 본수는 줄어들었고, 경합력이 낮았던 잡초는 경제적 한계 허용 밀도의 본수가 증가되는 경향이었다.
There are many cases of production processes which intermittently produce several different kinds of products for stock through one set of physical facility. In this case, an important question is what size of production run should be prduced once we do set-up for a product in order to minimize the total cost, that is, the sum of the set-up, carrying, and stock-out costs. This problem is used to be called scheduling of multiple products through a single facility in the production management field. Despite the very common occurrence of this type of production process, no one has yet devised a method for determining the optimal production schedule. The purpose of this study is to develop quantitative analytical models which can be used practically and give us rational production schedules. The study is to show improved models with application to a can-manufacturing plant. In this thesis the economic production quantity (EPQ) model was used as a basic model to develop quantitative analytical models for this scheduling problem and two cases, one with stock-out cost, the other without stock-out cost, were taken into consideration. The first analytical model was developed for the scheduling of products through a single facility. In this model we calculate No, the optimal number of production runs per year, minimizing the total annual cost above all. Next we calculate No$_{i}$ is significantly different from No, some manipulation of the schedule can be made by trial and error in order to try to fit the product into the basic (No schedule either more or less frequently as dictated by) No$_{i}$, But this trial and error schedule is thought of inefficient. The second analytical model was developed by reinterpretation by reinterpretation of the calculating process of the economic production quantity model. In this model we obtained two relationships, one of which is the relationship between optimal number of set-ups for the ith item and optimal total number of set-ups, the other is the relationship between optimal average inventory investment for the ith item and optimal total average inventory investment. From these relationships we can determine how much average inventory investment per year would be required if a rational policy based on m No set-ups per year for m products were followed and, alternatively, how many set-ups per year would be required if a rational policy were followed which required an established total average inventory inventory investment. We also learned the relationship between the number of set-ups and the average inventory investment takes the form of a hyperbola. But, there is no reason to say that the first analytical model is superior to the second analytical model. It can be said that the first model is useful for a basic production schedule. On the other hand, the second model is efficient to get an improved production schedule, in a sense of reducing the total cost. Another merit of the second model is that, unlike the first model where we have to know all the inventory costs for each product, we can obtain an improved production schedule with unknown inventory costs. The application of these quantitative analytical models to PoHang can-manufacturing plants shows this point.int.
Rhodocyclus gelatinosus KUP-74의 고농도 휴지균체로부터 ${\delta}-aminolevulinate$(ALA)를 연속적으로 생산하기 위한 최적조건을 검토하였다. 균체외 ALA양은 20 mg cells/ml의 균체농도까지는 농도 증가에 따른 rectangular hyperbola의 증가양식을 보였으나, 그 이상의 균체농도는 ALA 생산에 전혀 증가효과를 보이지 않았다. 20 mg cells/ml의 반응계에서, 균체외 ALA의 효과적 생산을 위한 첨가물질의 최저농도는 levulinate 4 mM과 L-glutamate 5 mM로 나타났으며, 배양 3시간후 ALA 양의 최대치를 보였다. 한편, Ca-alginate를 이용한 포괄법으로 고정화시킨 균체로부터 효과적으로 ALA를 생산하기 위한 첨가물질의 최적농도는 levulinate 6 mM과 L-glutamate 10 mM로 나타났으며, 배양 6시간째에 균체외 ALA 양의 최대치를 보였다. 또한, 이 조건 하에서 고정화균체와 고농도의 휴지균체에 의한 ALA의 연속생산성을 검토한 결과, 이들 균체에 의한 50% ALA 생산성은 각각 185시간과 100시간에서 나타났으며, 생산된 균체외 ALA의 회수를 위해서는 균체를 고정화시키는 방법이 효과적이었다.
콩재배시 발생하고 있는 기생잡초인 미국실새삼의 발생밀도가 콩 수량에 미치는 영향을 정량화하고 이들 경합에 의한 콩의 피해를 예측하여 콩 재배시 효율적인 잡초방제체계 관리정보를 제공하기 위하여 수행한 연구결과를 요약하면 다음과 같다. 미국실새삼의 발생밀도가 높아지더라도 콩의 생육초기에는 경장과 분지수에는 크게 영향을 미치지 않았으나 생육후기로 갈수록 감소하는 경향을 나타내었고 식물체 건물중, 백립중, 협수에서 유의적으로 감소하는 경향을 보였으며 콩에 미치는 피해정도는 협수> 백립중> 건물중> 분지수> 경장 순으로 영향을 미치는 것을 알 수 있었다. 미국실새삼 경합밀도가 1~48본 $m^{-2}$일때 콩 수량은 각각 80.3~99.7%의 수량감소를 보였으며, 미국실새삼 경합밀도별로 조사된 콩의 수량 자료에 따른 콩 수량 예측 모델은 Y = 274.6783/(1+4.3522X), $R^2=0.999$였으며 50% 수량감소를 유발하는 미국실새삼의 잡초밀도는 $m^2$당 0.23개로 추정되어 콩 재배지에 발생시 심각하게 피해를 줄 잡초로 예상된다. 생산 및 증수비용을 고려한 콩밭 미국실새삼의 경제적 피해한계 밀도 수준은 $m^2$당 0.004개로 예측할 수 있었으며 이보다 발생밀도가 많을 경우에는 잡초를 방제하는 것이 경제적으로 유리할 것으로 사료된다.
본 연구는 벼에 대한 피, 자귀풀과 미국가막사리의 경합에 따른 수량피해 예측과 경제적인 잡초관리를 위한 방제필요 밀도를 구명하고자 하였다. 수원과 대구지역에서 얻어진 성적을 종합한 예측모델식에 따르면 논에서 피, 자귀풀, 미국가막사리가 완전히 방제되었을 때의 쌀수량은 각각 5.5t, 5.5t, 5.4t 으로 예측되었다. 초종별 평방미터당 요방제 필요밀도는 자귀풀은 제초제 종류별로 0.5~0.7본, 피는 1.2~1.4본, 미국가막사리는 1.6~1.9본인 것으로 예측되었다.
본 시험은 2009년 경상북도 농업기술원 벼 재배포장에서 잡초발생 예찰 시스템 구축의 일환으로 최근 담수 직파답이 늘어나면서 벼 재배시 문제잡초인 벗풀과 미국가막사리를 대상으로 잡초 밀도별 벼와의 경합력을 구명하고 Rectangular hyperbola 모델을 기초로 잡초의 밀도에 따른 쌀 수량 감소를 예측하고 경제적인 방제 필요수준을 구명하고자 본 시험을 실시하게 되었다. 잡초 초종별 밀도 증가에 따른 벼 수량 예측식은 벗풀이 y=497.0/(1+0.003760x), $R^2$=0.869이고, 미국가막사리는 y=486.0/(1+0.007612x), $R^2$=0.887로 나타났다. 제초제 구입 비용은 $ha^{-1}$당 138,670원이었고, 제초제를 살포하는데 소요되는 인건비 등은 $ha^{-1}$당 99,360원, 쌀의 kg당 가격은 1,756원, 제초제의 방제가는 95%로 적용하였을 때 경제적 한계 허용 밀도는 잡초 완전 방제시 수량이 5톤이고 1본당 수량 감수 정도가 0.003670인 벗풀은 평방미터당 7.6본, 잡초 완전 방제시 수량이 4.9톤이고 1본당 수량 감수 정도가 0.007612인 미국가막사리는 평방미터당 3.9본이었다. 이와 같은 결과로 볼 때 잡초의 벼에 대한 경합력이 높을수록 경제적 한계 허용 밀도의 본수는 즐어 들었고, 경합력이 낮았던 잡초는 경제적 한계 허용 밀도의 본수가 증가되는 경향이었다.
Duncan & Chang(1970)는 던컨-창 모델을 제안하면서 흙시료의 초기 접선계수와 극한 축차응력을 구하기 위하여 쌍곡선이론을 사용하여 삼축압축시험의 응력-변형률의 비선형관계를 변환된 변형률/축차응력-변형률의 선형관계로 재구성하였다. 그러나 변환된 응력-변형률 관계는 이론적으로 선형관계를 나타내지만, 실제로는 시험이 시작되는 변형률이 작은 구간과 시료가 파괴에 이르는 변형률이 큰 구간에서는 비선형관계를 보인다. 이러한 현상은 삼축압축시험의 응력-변형률 곡선이 완전한 쌍곡선 형태가 아님을 나타낸다. 따라서 변환된 응력-변형률 곡선의 전 구간에 대하여 선형 회귀분석을 실시하여 직선의 식을 구하게 되면, 비선형관계를 나타내는 구간의 범위에 따라 선형관계식의 산정에 편차가 발생하게 된다. 이러한 편차를 줄이기 위하여 본 연구에서는 변환응력-변형률 관계에서 비선형을 나타내는 초반과 종반 구간을 제외한 구간에 대하여 선형회귀분석을 실시함으로써 초기접선계수와 극한 축차응력을 산정하는 수정회귀분석법을 제안하였다. 수정회귀분석법을 검증하기 위하여, 풍화토의 다짐시료에 대하여 압밀-배수 삼축압축시험을 실시하였다. 삼축압축시험의 응력-변형률 곡선으로부터 구한 변환응력-변형률 관계에 대해서 수정회귀분석을 실시하여 Duncan et al.(1980)이 제안한 2점법으로 구한 결과와 비교하였다. 분석결과 수정회기분석법에 비해 Duncan의 2점법으로 산정한 초기 접선계수는 4.0% 크게, 그리고 극한 축차응력은 2.9% 작게 평가되었다.
연구목적: 실트질 함유가 높으며 다양한 응력이력 때문에 침하량 예측에 어려움이 있는 우리나라의 서해안 중부지역의 연약점토지반의 침하량 특성을 분석하기 위하여 실험을 실시하였다. 연구방법: 3개의 경우에 대한 현장실험을 실시하였다. 각각의 경우에 대하여 침하판 침하량을 계측하였으며 Terzaghi의 일차원 압밀침하량, 쌍곡선법(hyperbolic method)과 Asaoka법을 모두 분석하여 실무에 유용한 결론을 도출하였다. 연구결과: Terzaghi에 의한 예측값이 모든 경우에서 가장 큰 것으로 분석되었으며 침하판 침하값에 비하여 111%~187%로 크게 예측하였다. 즉, 실제 지반의 침하량인 침하판 침하값이 Terzaghi의 예측값에 비하여 53.4~89.9% 의 침하를 나타내었다. 따라서, 우리나라 중부 서해안 점토질 연약지반에서 Terzaghi방법에 의한 예상침하량은 실제 침하량보다 과다하게 예상하는 것으로 분석되었다. 결론: Asaoka방법과 쌍곡선 방법은 비교적 유사한 결과를 제시한 것으로 분석되었으며, 실무에서는 실제 침하량 보다 작게 침하량을 예측할 경우 위험을 초래할 수 있으므로 실제 침하량보다 6~14% 크게 예측한 쌍곡선 분석법이 안전측으로 사용될 수 있을 것으로 판단된다.
도심지 도로에서의 지하공동 붕괴로 인한 지반침하 문제는 인명 및 재산 피해로 이어질 수 있기 때문에 이를 예방하기 위해서는 사전에 지하공동을 탐지하고 복구하는 과정이 필요하다. 지하공동 탐지는 주로 지표투과레이더(ground penetrating radar, GPR) 탐사를 통해 이루어지는데, 방대한 탐사 자료로 인해 해석에 많은 시간이 소모되고 전문가의 숙련도와 주관에 따라 해석 결과가 달라질 수 있다. 이러한 문제를 해결하기 위해 GPR 자료 해석 자동화 및 정량화 기법들이 연구되어 왔으며, 최근에는 딥러닝 기반의 해석 기법들이 많이 활용되고 있다. 이 연구에서는 딥러닝 기반의 GPR 자료해석 기법 중 쌍곡선(hyperbola) 신호를 탐지하는 과정에 대해 기존 연구에서 개발된 기법을 단계별로 실증 예제를 통해 설명하였다. 먼저, 쌍곡선 신호를 자동으로 탐지하기 위해서 딥러닝 기반 YOLOv3 객체탐지 기법을 적용했다. 다음으로는 column-connection clustering (C3) 알고리즘을 통해 쌍곡선 신호만을 추출하였고, 최종적으로 회귀분석을 통해 지하공동의 수평위치를 결정했다. YOLOv3 객체탐지 기법을 이용한 쌍곡선 신호 탐지 성능은 AP50 기준으로 정밀도 84%, 재현율 92%를 달성했다. 지하공동 수평위치 정확도는 4개 샘플에 대해 실제 위치와 약 0.12 ~ 0.36 m 정도의 차이를 보였다. 이를 통해 지하공동에 의해 나타나는 쌍곡선 신호에 대한 딥러닝 기반 탐지 기법의 적용성을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.