• 제목/요약/키워드: Hyper-Rectangles

검색결과 4건 처리시간 0.016초

Hyper-Rectangles를 이용한 단일 분류기 설계 (Design of One-Class Classifier Using Hyper-Rectangles)

  • 정인교;최진영
    • 대한산업공학회지
    • /
    • 제41권5호
    • /
    • pp.439-446
    • /
    • 2015
  • Recently, the importance of one-class classification problem is more increasing. However, most of existing algorithms have the limitation on providing the information that effects on the prediction of the target value. Motivated by this remark, in this paper, we suggest an efficient one-class classifier using hyper-rectangles (H-RTGLs) that can be produced from intervals including observations. Specifically, we generate intervals for each feature and integrate them. For generating intervals, we consider two approaches : (i) interval merging and (ii) clustering. We evaluate the performance of the suggested methods by computing classification accuracy using area under the roc curve and compare them with other one-class classification algorithms using four datasets from UCI repository. Since H-RTGLs constructed for a given data set enable classification factors to be visible, we can discern which features effect on the classification result and extract patterns that a data set originally has.

비디오 데이터 세트의 하이퍼 사각형 표현에 기초한 비디오 유사성 검색 알고리즘 (Similarity Search Algorithm Based on Hyper-Rectangular Representation of Video Data Sets)

  • 이석룡
    • 정보처리학회논문지D
    • /
    • 제11D권4호
    • /
    • pp.823-834
    • /
    • 2004
  • 이 연구에서는 대용량 비디오 데이터 스트림에 대한 유사성 검색 알고리즘을 제시한다. 수많은 프레임으로 이루어진 비디오 스트림은 각 프레임을 다차원 벡터(multidimensional vector)로 나타냄으로써 다차원 데이터 공간 상에서 시퀸스로 나타낼 수 있다. 이 시퀸스의 특성을 분석 함으로써 각 시퀸스를 비디오 세그먼트(video segment)와 이 세그먼트의 집합인 비디오 클러스터(video cluster)로 표현한다. 본 연구에서는 이러한 비디오 세그먼트와 클러스터를 사용하여 두 비디오 스트림 사이의 유사성 함수(similarity function)를 제시하고, 이 함수에 근거하여 비디오 세그먼트의 하이퍼 사각형과 대표 프레임에 기초한 두 가지의 유사성 검색 알고리즘을 제안한다. 전자는 정해성(correctness)을 보장하는 알고리즘이며, 후자는 정해성을 약간 희생하는 대신 상당한 효율성을 얻을 수 있는 알고리즘이다. 다양한 유형의 비디오 스트림 및 가상으로 생성된 스트림 데이터에 대한 실험을 통하여 제시한 알고리즘의 성능을 분석한다.

가우시안 기반 Hyper-Rectangle 생성을 이용한 효율적 단일 분류기 (An Efficient One Class Classifier Using Gaussian-based Hyper-Rectangle Generation)

  • 김도균;최진영;고정한
    • 산업경영시스템학회지
    • /
    • 제41권2호
    • /
    • pp.56-64
    • /
    • 2018
  • In recent years, imbalanced data is one of the most important and frequent issue for quality control in industrial field. As an example, defect rate has been drastically reduced thanks to highly developed technology and quality management, so that only few defective data can be obtained from production process. Therefore, quality classification should be performed under the condition that one class (defective dataset) is even smaller than the other class (good dataset). However, traditional multi-class classification methods are not appropriate to deal with such an imbalanced dataset, since they classify data from the difference between one class and the others that can hardly be found in imbalanced datasets. Thus, one-class classification that thoroughly learns patterns of target class is more suitable for imbalanced dataset since it only focuses on data in a target class. So far, several one-class classification methods such as one-class support vector machine, neural network and decision tree there have been suggested. One-class support vector machine and neural network can guarantee good classification rate, and decision tree can provide a set of rules that can be clearly interpreted. However, the classifiers obtained from the former two methods consist of complex mathematical functions and cannot be easily understood by users. In case of decision tree, the criterion for rule generation is ambiguous. Therefore, as an alternative, a new one-class classifier using hyper-rectangles was proposed, which performs precise classification compared to other methods and generates rules clearly understood by users as well. In this paper, we suggest an approach for improving the limitations of those previous one-class classification algorithms. Specifically, the suggested approach produces more improved one-class classifier using hyper-rectangles generated by using Gaussian function. The performance of the suggested algorithm is verified by a numerical experiment, which uses several datasets in UCI machine learning repository.

클래스 영역을 보존하는 초월 사각형에 의한 프로토타입 선택 알고리즘 (Hyper-Rectangle Based Prototype Selection Algorithm Preserving Class Regions)

  • 백병현;어성율;황두성
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제9권3호
    • /
    • pp.83-90
    • /
    • 2020
  • 프로토타입 선택은 훈련 데이터로부터 클래스 영역을 대표하는 최소 데이터를 선택하여 낮은 학습 시간 및 저장 공간을 보장하는 장점을 제공한다. 본 논문은 모든 분류 알고리즘에 적용할 수 있는 초월 사각형을 이용한 새로운 훈련 데이터의 생성 방법을 설계한다. 초월 사각형 영역은 서로 다른 클래스 데이터를 포함하지 않으며 클래스 공간을 분할한다. 선택된 초월 사각형 내 데이터의 중간값은 프로토타입이 되어 새로운 훈련 데이터를 구성하고, 초월 사각형의 크기는 클래스 영역의 데이터 분포를 반영하여 조절된다. 전체 훈련 데이터를 대표하는 최소의 프로토타입 집합 선택을 위해 집합 덮개 최적화 알고리즘을 설계했다. 제안하는 방법에서는 탐욕 알고리즘과 곱셈 연산을 포함하지 않은 거리 계산식을 이용하여 집합 덮개 최적화 알고리즘의 다항 시간을 요구하는 시간 복잡도 문제를 해결한다. 실험에서는 분류 성능의 비교를 위해 최근접 이웃 규칙과 의사 결정 트리 알고리즘을 이용하며 제안하는 방법이 초월 구를 이용한 프로토타입 선택 방법보다 우수하다.