• Title/Summary/Keyword: Hyowon6

Search Result 23, Processing Time 0.019 seconds

Air Temperature Modification of an Urban Neighborhood Park in Summer - Hyowon Park, Suwon-si, Gyeonggi-do- (여름철 도시근린공원의 기온저감 효과 - 경기도 수원시 효원공원 -)

  • Park, Sookuk;Jo, Sangman;Hyun, Cheolji;Kong, Hak-Yang;Kim, Seunghyun;Shin, Youngkyu
    • Journal of Environmental Science International
    • /
    • v.26 no.9
    • /
    • pp.1057-1072
    • /
    • 2017
  • In order to investigate the effect of air temperature reduction on an urban neighborhood park, air temperature data from five inside locations (forest, pine tree, lawn, brick and pergola) depending on surface types and three outside locations (Suwon, Maetan and Kwonsun) depending on urban forms were collected during the summer 2016 and compared. The forest location had the lowest mean air temperature amongst all locations sampled, though the mean difference between this and the other four locations in the park was relatively small ($0.2-0.5^{\circ}C$). In the daytime, the greatest mean difference between the forest location and the two locations exposed to direct beam solar radiation (brick and lawn) was $0.5-0.8^{\circ}C$ (Max. $1.6-2.1^{\circ}C$). In the nighttime, the mean difference between the forest location and the other four locations in the park was small, though differences between the forest location and locations with grass cover (pine tree and lawn) reached a maximum of $0.9-1.7^{\circ}C$. Comparing air temperature between sunny and shaded locations, the shaded locations showed a maximum of $1.5^{\circ}C$ lower temperature in the daytime and $0.7^{\circ}C$ higher in the nighttime. Comparing the air temperature of the forest location with those of the residential (Kwonsun) and apartment (Maetan) locations, the mean air temperature difference was $0.8-1.0^{\circ}C$, higher than those measured between the forest location and the other park locations. The temperatures measured in the forest location were mean $0.9-1.3^{\circ}C$ (Max. $2.0-3.9^{\circ}C$) lower in the daytime than for the residential and apartment locations and mean $0.4-1.0^{\circ}C$ (Max. $1.3-3.1^{\circ}C$) lower in the nighttime. During the hottest period of each month, the difference was greater than the mean monthly differences, with temperatures in the residential and apartment locations mean $1.0-1.6^{\circ}C$ higher than those measured in the forest location. The effect of air temperature reduction on sampling locations within the park and a relatively high thermal environment on the urban sampling locations was clearly evident in the daytime, and the shading effect of trees in the forest location must be most effective. In the nighttime, areas with a high sky view factor and surface types with high evapotranspiration potential (e.g. grass) showed the maximum air temperature reduction. In the urban areas outside the park, the low-rise building area, with a high sky view factor, showed high air temperature due to the effect of solar (shortwave) radiation during the daytime, while in the nighttime the area with high-rise buildings, and hence a low sky view factor, showed high air temperature due to the effect of terrestrial (longwave) radiation emitted by surrounding high-rise building surfaces. The effect of air temperature reduction on the park with a high thermal environment in the city was clearly evident in the daytime, and the shading effect of trees in the forest location must be most effective. In the nighttime, areas with high sky view factor and surface types (e.g., grass) with evapotranspiration effect showed maximum air temperature reduction. In the urban areas outside the park, the high sky view factor area (low-rise building area) showed high air temperature due to the effect of solar (shortwave) radiation during the daytime, but in the nighttime the low sky view factor area (high-rise building area) showed high air temperature due to the effect of terrestrial (longwave) radiation emitted surrounding high-rise building surfaces.

Non-astronomical Tides and Monthly Mean Sea Level Variations due to Differing Hydrographic Conditions and Atmospheric Pressure along the Korean Coast from 1999 to 2017 (한국 연안에서 1999년부터 2017년까지 해수물성과 대기압 변화에 따른 계절 비천문조와 월평균 해수면 변화)

  • BYUN, DO-SEONG;CHOI, BYOUNG-JU;KIM, HYOWON
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.1
    • /
    • pp.11-36
    • /
    • 2021
  • The solar annual (Sa) and semiannual (Ssa) tides account for much of the non-uniform annual and seasonal variability observed in sea levels. These non-equilibrium tides depend on atmospheric variations, forced by changes in the Sun's distance and declination, as well as on hydrographic conditions. Here we employ tidal harmonic analyses to calculate Sa and Ssa harmonic constants for 21 Korean coastal tidal stations (TS), operated by the Korea Hydrographic and Oceanographic Agency. We used 19 year-long (1999 to 2017) 1 hr-interval sea level records from each site, and used two conventional harmonic analysis (HA) programs (Task2K and UTide). The stability of Sa harmonic constants was estimated with respect to starting date and record length of the data, and we examined the spatial distribution of the calculated Sa and Ssa harmonic constants. HA was performed on Incheon TS (ITS) records using 369-day subsets; the first start date was January 1, 1999, the subsequent data subset starting 24 hours later, and so on up until the final start date was December 27, 2017. Variations in the Sa constants produced by the two HA packages had similar magnitudes and start date sensitivity. Results from the two HA packages had a large difference in phase lag (about 78°) but relatively small amplitude (<1 cm) difference. The phase lag difference occurred in large part since Task2K excludes the perihelion astronomical variable. Sensitivity of the ITS Sa constants to data record length (i.e., 1, 2, 3, 5, 9, and 19 years) was also tested to determine the data length needed to yield stable Sa results. HA results revealed that 5 to 9 year sea level records could estimate Sa harmonic constants with relatively small error, while the best results are produced using 19 year-long records. As noted earlier, Sa amplitudes vary with regional hydrographic and atmospheric conditions. Sa amplitudes at the twenty one TS ranged from 15.0 to 18.6 cm, 10.7 to 17.5 cm, and 10.5 to 13.0 cm, along the west coast, south coast including Jejudo, and east coast including Ulleungdo, respectively. Except at Ulleungdo, it was found that the Ssa constituent contributes to produce asymmetric seasonal sea level variation and it delays (hastens) the highest (lowest) sea levels. Comparisons between monthly mean, air-pressure adjusted, and steric sea level variations revealed that year-to-year and asymmetric seasonal variations in sea levels were largely produced by steric sea level variation and inverted barometer effect.

Studies on Hilly Pasture Landscape Expectancy, Satisfaction of Tourist on Grassland Facility: A case Study of Yangtae Farm Visitor (산지목장 방문자의 목장 경관 기대와 목초지 및 초지시설 만족도에 관한 연구 : 양떼목장 방문객의 경우)

  • Kang, Dae-Koo;Lee, Hyo-Jin;Lee, Hyowon
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.37 no.1
    • /
    • pp.68-79
    • /
    • 2017
  • The objective of study was to find the relationship in hilly pasture landscape expectancy and tourist's satisfaction on grassland facility. It was followed by literature reviews and visitors' survey in Daegwallyeong Yangtte Farm on 31, July, 2014. 367 respondents were analyzed by F-test, t-test, Chi-square and Fisher's Exact Test at 0.05 level after data screening process. Computing factors were sex, marital status, age, academic career and occupation. The results was as followed; First, major respondents group of survey were in oder of woman, forty years old group, married office worker, and university graduate. Second, the expectancy for grassland was significant difference in age, but pasture color expectancy was not significant difference in gender, age, educational background, marital status, and there was significant difference in favorite grassland type with age, marital status. Third, favorite fence type was not significant difference along with all group of participants. However, color and material of fence was significant difference in marital status. Fourth, preferred ranch road was significant difference with occupation and marital status. There was significant difference in favorite grassland type near ranch road along with age and occupation type. Fifth, the mean satisfaction was 3.6 point in 5.0. Therefore, all respondents were generally satisfaction in visited. Tourists were more interested in ranch landscape than experience or contacts to animal.