• Title/Summary/Keyword: Hyoscyamine 6${\beta}$-hydroxylase

Search Result 4, Processing Time 0.018 seconds

Overexpression of Hyoscyamine 6${\beta}$-Hydroxylase (h6h) Gene and Enhanced Production of Tropane Alkaloids in Scopolia parviflora Hairy Root Lines

  • KANG, YOUNG-MIN;LEE, OK-SUN;JUNG, HEE-YOUNG;KANG, SEUNG-MI;LEE, BYUNG-HYUN;CHANDRAKANT KARIGAR;THEERTHA PRASAD;BAHK, JUNG-DONG;CHOI, MYUNG-SUK
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.91-98
    • /
    • 2005
  • The hyoscyamine 6${\beta}$-hydroxylase (h6h) gene was introduced into the genome of Scopolia parviflora through the Agrobacterium rhizogenes binary vector system. The enzyme was expressed ally and tissue specific selectively in roots, resulting in five transgenic hairy root lines. The presence of the h6h gene in kanamycin-resistant hairy roots and its overexpression were confirmed by polymerase chain reaction (PCR), Northern blotting, and Western blotting, respectively. In the transgenic hairy root lines which constitutively expressed the H6H enzyme, hyoscyamine and scopolamine accumulated in high concentration. Among the transgenic hairy root lines that expressed the H6H enzyme, only two were more productive. The levels of tropane alkaloids in transgenic hairy root varied greatly: The best transgenic line (#5) contained 8.12 mg of scopolamine per g dry weight, which produced the compound three times more than wild-type root. These results suggest a possibility of improving the yield of tropane alkaloids in hairy root lines by genetic and metabolic engineering.

Molecular Cloning and Characterization of a New cDNA Encoding Hyoscyamine 6β-hydroxylase from Roots of Anisodus acutangulus

  • Kai, Guoyin;Chen, Junfeng;Li, Li;Zhou, Genyu;Zhou, Limin;Zhang, Lei;Chen, Yuhui;Zhao, Linxia
    • BMB Reports
    • /
    • v.40 no.5
    • /
    • pp.715-722
    • /
    • 2007
  • A new full-length cDNA encoding hyoscyamine $6\beta$-hydroxylase (designated as aah6h, GenBank Accession No. EF187826), which catalyzes the last committed step in the scopolamine biosynthetic pathway, was isolated from young roots of Anisodus acutangulus by rapid amplification of cDNA ends (RACE) for the first time. The full-length cDNA of aah6h was 1380 bp and contained a 1035 bp open reading frame (ORF) encoding a deduced protein of 344 amino acid residues. The deduced protein had an isoelectric point (pI) of 5.09 and a calculated molecular mass of about 38.7 kDa. Sequence analyses showed that AaH6H had high homology with other H6Hs isolated from some scopolamine-producing plants such as Hyoscyamus niger, Datura metel and Atropa belladonna etc. Bioinformatics analyses results indicated AaH6H belongs to 2-oxoglutarate-dependent dioxygenase superfamily. Phylogenetic tree analysis showed that AaH6H had closest relationship with H6H from A. tanguticus. Southern hybridization analysis of the genomic DNA revealed that aah6h belonged to a multi-copy gene family. Tissue expression pattern analysis firstly founded that aah6h expressed in all the tested tissues including roots, stems and leaves and indicated that aah6h was a constitutive-expression gene, which was the first reported tissue-independent h6h gene compared to other known h6h genes.

Production of tropane alkaloids by metabolic engineering of Hyoscyamus niger H6H(hyoscyamine $6{\beta}-hydroxylase$) gene introduced Scopolia parviflora hairy root

  • Kang, Young-Min;Lee, Ok-Sun;Jung, Hee-Young;Kim, Won-Jung;Kang, Seung-Mi;Min, Ji-Yun;Bahk, Dong-Jin;Yun, Dae-Jin;Bahk, Jung-Dong;Choi, Myung-Suk
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.568-570
    • /
    • 2003
  • The Hyoscyamus niger hyoscyamine $6{\beta}-hydroxylase$ (H6H, EC 1.14.11.11) gene was introduced into the genome of a Scopolia parviflora by the binary vector system using the disarmed Agrobacterium rhizogenes strain KCTC 2703. Expression of H6H enzyme which are involved in alkaloids pathway by western blot analysis using proteins extracted from leaf, stem flower, branch root and main root were examined The enzyme expression was found only in the roots, with no expression in leaf, stem and flower. The alkaloids contents were the most higher in root and then leaf and stem has very small amount of alkaloid contents were analyzed by HPLC. The expression level of H6H in transgenic plants were two or more times than wild type plants. In transgenic plant which constitutively expresses H6H enzyme, high concentration of scopolamine was accumulated.

  • PDF

Production of Monoclonal Antibody about Specific Key Enzyme of Hyoscyamine $6{\beta}-Hydroxylase$ (H6H) in Scopolia parviflora

  • Kang, Young-Min;Jung, Hee-Young;Kang, Seung-Mi;Jin, Byung-Rae;Lee, Sang-Chul;Lee, Byung-Hyun;Choi, Myung-Suk
    • Korean Journal of Medicinal Crop Science
    • /
    • v.12 no.2
    • /
    • pp.135-140
    • /
    • 2004
  • Total RNAs were isolated from cultured roots of Scopolia parviflora, $poly(A)^+$ RNA was obtained through the mRNA purification, cDNA library of Hnh6h was constructed. Recombinant baculoviruses in Spodoptera frugiperda (Sf) cells were constructed by use of the transfer vector pBacPAK, which has the AcNPV sequence under the polyhedrin promoter. The expression vector carrying Hnh6h gene was transferred to S. parviflora and obtained transgenic hairy root lines. Our results confirmed the over expression of the H6H protein was used by anti-pBacPAK about cDNAs of S. parviflora. This study will served for production of tropane alkaloids by metabolic engineering.