• Title/Summary/Keyword: Hyers-Ulam stability of additive mappings

Search Result 24, Processing Time 0.018 seconds

APPROXIMATE BI-HOMOMORPHISMS AND BI-DERIVATIONS IN C*-TERNARY ALGEBRAS: REVISITED

  • Cho, Young;Jang, Sun Young;Kwon, Su Min;Park, Choonkil;Park, Won-Gil
    • Korean Journal of Mathematics
    • /
    • v.21 no.2
    • /
    • pp.161-170
    • /
    • 2013
  • Bae and W. Park [3] proved the Hyers-Ulam stability of bi-homomorphisms and bi-derivations in $C^*$-ternary algebras. It is easy to show that the definitions of bi-homomorphisms and bi-derivations, given in [3], are meaningless. So we correct the definitions of bi-homomorphisms and bi-derivations. Under the conditions in the main theorems, we can show that the related mappings must be zero. In this paper, we correct the statements and the proofs of the results, and prove the corrected theorems.

ERRATUM: “A FIXED POINT METHOD FOR PERTURBATION OF BIMULTIPLIERS AND JORDAN BIMULTIPLIERS IN C*-TERNARY ALGEBRAS” [J. MATH. PHYS. 51, 103508 (2010)]

  • YUN, SUNGSIK;GORDJI, MADJID ESHAGHI;SEO, JEONG PIL
    • The Pure and Applied Mathematics
    • /
    • v.23 no.3
    • /
    • pp.237-246
    • /
    • 2016
  • Ebadian et al. proved the Hyers-Ulam stability of bimultipliers and Jordan bimultipliers in C*-ternary algebras by using the fixed point method. Under the conditions in the main theorems for bimultipliers, we can show that the related mappings must be zero. Moreover, there are some mathematical errors in the statements and the proofs of the results. In this paper, we correct the statements and the proofs of the results, and prove the corrected theorems by using the direct method.