• Title/Summary/Keyword: Hydrothermal treated

Search Result 83, Processing Time 0.02 seconds

Effects of Substrate to Inoculum Ratio on Biochemical Methane Potential in Thermal Hydrolysate of Poultry Slaughterhouse Sludge (기질과 접종액의 비율이 도계 가공장 슬러지 열가수분해액의 메탄생산퍼텐셜에 미치는 영향)

  • Oh, Seung-Yong;Yoon, Young-Man
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.2
    • /
    • pp.121-127
    • /
    • 2016
  • BACKGROUND: Anaerobic digestion is the most feasible technology because not only the energy embedded in organic matters can be recovered, but also they are stabilized while being degraded. This study carried out to improve methane yield of slaughterhouse wastewater treatment sludge cake by the thermal pre-treatment prior to anaerobic digestion.METHODS AND RESULTS: Slaughterhouse wastewater treatment sludge cake was pre-treated by the closed hydrothermal reactor at reaction temperature of 190℃. BMPs (Biochemical methane potential) of the thermal hydrolysate was tested in the different S(Substrate)/I(Inoculum) ratio conditions. COD(Chemical oxygen demand) and SCOD(Soluble chemical oxygen demand) contents of thermal hydrolysate were 10.99% and 10.55%, respectively, then, the 96.00% of COD was remained as a soluble form. The theoretical methane potential of thermal hydrolysate was 0.51 Nm3 kg-1-VSadded. And BMPs were decreased from 0.56 to 0.22 Nm3 kg-1-VSadded when S/I ratio were increased from 0.1 to 2.0 in the VS content basis. Those were decreased from 0.32 to 0.13 Nm3 kg-1-CODadded when S/I ratio were increased from 0.1 to 2.0 based on COD content. The anaerobic degradability of VS basis have showed 196.9%, 102.2%, 80.7%, 67.4%, and 39.4% in S/I ratios of 0.1, 0.3, 0.5, 1.0, and 2.0, respectively. Also the COD of 119.6%, 76.3%, 70.1%, 69.0%, and 43.1% were degraded anaerobically in S/I ratios of 0.1, 0.3, 0.5, 1.0, and 2.0, respectively.CONCLUSION: BMPs obtained in the S/I ratios of 0.1 and 0.3 was overestimated by the residual organic matters remaining at the inoculum. And inhibitory effect was observed in the highest S/I ratio of 2.0. The optimum S/I ratios giving reasonable BMPs might be in the range of 0.5 and 1.0 in S/I ratio. Therefore VS biodegradability of thermal hydrolysate was in 67.4-80.7% and COD biodegradability showed 69.0-70.1%.

Utilization of Plant Phytase to Improve Phosphorous Availability for Broiler (육계의 인 이용율 향상을 위한 식물성 Phytase의 이용)

  • Kim, B.H.;Namkung, H.;Paik, I.K.
    • Journal of Animal Science and Technology
    • /
    • v.44 no.4
    • /
    • pp.407-418
    • /
    • 2002
  • This study was conducted to evaluate the efficacy of wheat and wheat bran  as the source of phytase in a 5 week broiler feeding trial. One thousand day-old broiler chickens(Ross$^{(R)}$) were divided into 20 pens of 50 broilers(25 male and 25 female) each. Four pens were randomly arranged to one of the five dietary treatments: T1, control diet containing normal nonphytate P(NPP) ;  T2, T1 - 0.1% NPP; T3, T2 + 600IU microbial phytase(NOVO$^{(R)}$) per kg diet; T4, T2 + 600IU plant phytase from wheat and wheat bran; T5, T2 + 600IU plant phytase from wheat and hydrothermally treated wheat bran. Reduction of NPP level by 0.1%(T2) reduced weight gain and feed intake but plant phytase treatments(T4 and T5) recovered the lost performance. Plant phytase treatments showed better (p<0.05) weight gain and intake than the microbial phytase treatment(T3). There was no difference between regular wheat bran treatment(T4) and hydrothermally treated wheat bran treatment(T5). Mortality was the highest by low NPP diet(T2). Availability of ether extract and crude ash of grower diet was the highest(p<0.05) in normal wheat bran diet(T4). Availability of Ca and P of grower diet was the highest(p<0.05) in T4 followed by T3 and T5. Availability of Mg, Fe and Zn was drastically improved by phytase treatments(T3, T4 and T5). Excretion of Ca, P, Mg, Fe and Zn was the lowest(p<0.05) with microbial phytase treatment(T3). Serum level of Ca and Mg was the highest(p<0.05) with the low NPP treatment(T2). Tibial ash content of T2 and T3 was lower(p<0.05) than that of T1, T4 and T5. However, tibial Ca content was higher(p<0.05) in T1 and T2 than other treatments. Tibial P and Mg contents were the highest(p<0.05) in T1. It was concluded that plant phytase from wheat bran can be effectively used to improve P utilization. Hydrothermal treatment of wheat bran prior to inclusion in the diet had no beneficial effects.

Rare-Earth Metal Complex-Functionalized Mesoporous Silica for a Potential UV Sensor (잠재적인 UV 센서를 위한 희토류 금속착물이 기능화된 메조다공성 실리카)

  • Sung Soo Park;Mi-Ra Kim;Weontae Oh;Yedam Kim;Yeeun Lee;Youngeon Lee;Kangbeom Ha;Dojun Jung
    • Journal of Adhesion and Interface
    • /
    • v.24 no.4
    • /
    • pp.136-142
    • /
    • 2023
  • In this study, TEOS was used as a silica source, and a triblock copolymer (P123) was used as a template to produce mesoporous silica with a well-ordered hexagonal mesopore array through a self-assembly method and hydrothermal process under acidic condition. (Surfactant-extracted SBA-15). Surfactant-extracted SBA-15 showed the particle shape of a short rod with a size of approximately 980 nm. The surface area and pore diameter were 730 m2g-1 and 70.8 Å, respectively. Meanwhile, aminosilane (3-aminopropyltriethoxysilane, APTES) was grafted into the mesopores using a post-synthesis method. Mesoporous silica (APTES-SBA-15) modified with aminosilane had a well-ordered pore structure (p6mm) and well-maintained the particle shape of short rods. The surface area and pore diameter of APTES-SBA-15 decreased to 350 m2g-1 and 60.7 Å, respectively. APTES-modified mesoporous silica was treated with a solution of rare earth metal ions (Eu3+, Tb3+) to synthesize a mesoporous silica material in which rare earth metal complexes were introduced into the mesopores. (Eu/APTES-SBA-15, Tb/APTES-SBA-15) These materials exhibited characteristic photoluminescence spectra by λex=250 nm. (5D47F5 (543.5 nm), 5D47F4 (583.5 nm), 5D47F3 (620.2 nm) transitions for Tb/APTES-SBA-15; 5D07F0 (577.7 nm), 5D07F1 (592.0 nm), 5D07F2 (614.9 nm), 5D07F3 (650.3 nm) and 5D07F4 (698.5 nm) transitions for Eu/APTES-SBA-15)