• Title/Summary/Keyword: Hydrothermal conditions

Search Result 291, Processing Time 0.024 seconds

A study on the synthesis of tin oxide crystalline by the liquid reduction precipitation method and hydrothermal process (액상환원침전법 및 수열반응법을 이용한 주석산화물 결정 합성에 관한 연구)

  • Park, Il-Jeong;Kim, Geon-Hong;Kim, Dae-Weon;Choi, Hee-Lack;Jung, Hang-Chul
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.3
    • /
    • pp.95-100
    • /
    • 2016
  • In this work, tin oxides were obtained by the liquid reduction precipitation method and hydrothermal process using $SnCl_2{\cdot}2H_2O$, $N_2H_4$, and NaOH. Tin oxide crystals having different sizes and morphologies could be achieved. The powders were characterized by X-ray diffraction (XRD) and Field Emission Scanning Electron Microscopy (FE-SEM). Depending on the molar ratio of the raw materials, tin oxide crystalline with the spherical and rectangular plate-like shape could be obtained, the crystal phase was SnO and $Sn_6O_4(OH)_4$. And the obtained SnO crystals by a hydrothermal reaction showed various shapes, such as, spherical, plate-like and flower-like architectures depending on the temperature conditions.

Preparation and Characterization of Silver Nanoparticles Embedded in Silica Sol Particles

  • Kang, Byung-Kyu;Son, Dong-Min;Kim, You-Hyuk
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3707-3711
    • /
    • 2011
  • Silver nanoparticles coated with silica can be obtained by the reduction of $AgNO_3$ with hydrazine in the presence of NaOH-stabilized, active silicic acid (polysilicic acid). The size of the silver nanoparticles and the silica shell thicknesses were affected by varying the hydrazine content, the active silicic acid content and the experimental method (e.g. hydrothermal method). Typically, silver nanoparticles sized around 40 nm were aggregated, connected by silica. The presence of peaks centered around 400 nm in UV-vis spectra corresponds to the surface plasmon resonance of silver nanoparticles. The size of the aggregated silver nanoparticles increased with increasing hydrazine concentration. Under hydrothermal conditions at $150^{\circ}C$ the formation of individual silica particles was observed and the sizes of the silver nanoparticles were reduced. The hydrothermal treatment of silver nanoparticles at $180^{\circ}C$ gives a well-defined Ag@$SiO_2$ core-shell in aggregated silica sol particles. The absorption band observed at around 412 nm were red-shifted with respect to the uncoated silver nanoparticles (${\lambda}_{max}$ = 399 nm) due to the larger refractive index of silica compared to that of water. The formation of silver nanoparticles coated with silica is confirmed by UV-visible absorption spectra, transmission electron microscopy (TEM) and energy-dispersive spectroscopy (EDS) data.

Ni(OH)2 and NiO Nanostructures: Synthesis, Characterization and Electrochemical Performance

  • Saghatforoush, Lotf Ali;Hasanzadeh, Mohammad;Sanati, Soheila;Mehdizadeh, Robabeh
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2613-2618
    • /
    • 2012
  • Hydrothermal route have been used in different conditions for preparation of $Ni(OH)_2$ nanostructures. The NiO nanoparticles were obtained by calcining the $Ni(OH)_2$ precursor at $450^{\circ}C$ for 2 h. The effect of sodium dodecyl sulfonate (SDS) as surfactant on the morphology and size of $Ni(OH)_2$ nanoparticles were discussed in detail. X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM) and Fourier transform infrared (FT-IR) spectroscopy were used to characterize the products. The growth mechanism of the as-synthesized nanostructures was also discussed in detail based on the experimental results. Coming up, the NiO nanoparticle modified carbon paste electrode was applied to the determination of captopril in aqueous solution.

Hydrothermal Growth of $GaPO_{4}$ Single Crystals in HCI Solution

  • Pan-Chae Kim;Shin-Ichi Hirano
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.1 no.1
    • /
    • pp.60-65
    • /
    • 1991
  • The hydrothermal growth of $GaPO_{4}$ Single Crystals was carried out by the horizontal temperature gradient method. The most promising solvents for the crystal growth of $GaPO_{4}$ are $H_{3}PO_{4}$ and HCl solutions. Single crystals have been hydothermally grown at temperatures over the range $210-290^{\circ}C$ in these solutions with seed crystals. The glowth rates in HCl solution were higher than that for comparable conditions in $H_{3}PO_{4}$ solution. Morphologies of crystals grown at temperatures below $200^{\circ}C$ tended to be bounded by small major rhombohedral(10$\bar{1}$1) faces. In the temperature range from 200 to $430^{\circ}C$, the single crystals have morphologies bounded by prism (10$\bar{1}$0), small major rhombohedral(10$\bar{1}$1) and minor rhombohedral(01$\bar{1}$1) faces at the early stage, and grew with well developed basal(0001) faces by increasing the growth temperature.

  • PDF

A Study on the Relationship between Surface Condition and Critical Heat Flux in Heat Exchanger (열교환기 표면상태와 CHF의 상관관계에 대한 연구)

  • Kim, Woo-Joong;Kim, Nam-Jin
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.16 no.2
    • /
    • pp.1-6
    • /
    • 2020
  • This work experimentally explored the influence of nano-fouling on CHF, flow boiling heat transfer coefficient, contact angle, and surface roughness. In this study, the flow velocity conditions are established at 0.5, 1.0, and 1.5 m/s. Also, the nanoparticles of oxidized MWCNT were deposited on a heat transfer surface for 0, 120, 180, and 240 sec. As the results, it was found that CHF and superheated temperature were increased in case of nano fouling on the heat transfer surface in oxidized MWCNT fluid. Also, the contact angle and surface roughness decreased when flow velocity and nano coating increased.

Synthesis of Kaolinte from Pyrophyllite by the Hydrothermal Reaction (엽납석으로부터 캐올리나이트 합성연구)

  • 장영남
    • Economic and Environmental Geology
    • /
    • v.32 no.4
    • /
    • pp.373-378
    • /
    • 1999
  • An investigation was conducted to find out formation and is mechanism of kaolinite from pyrophyllite under hydrothermal conditions. First, a pyropyllite sample from the Heenam district, Korea, was activated by heat-treating at $400^{\circ}C$ for 3 hrs. The kaolinite powder was successfully obtained by subjecting the dried feedstock to autoclaving at $200^{\circ}C$, 15atm, pH<1 for 5days with addition of 17.4mol/l $AlCl_3$. Evidently, the $AlCl_3$ addition as a mineralizer strongly promoted incorporation of $Al^{3+}$ ion into pyrophyllite structure which was subdequently converted into kaolinite. It also indicated that the formation of octahedral feed solution. The final pH of the solution was decreased to ~0.3. The transformation reaction was not noticeably accelerated when 10wt% natural kaolinite was added as the seeds, suggesting that the transformation was not reconstructional, but substitutional type.

  • PDF

A Study on the Relationship Between Photovoltaic Module Surface Temperature and Photovoltaic Power Using Real Experiment (실물 실험을 통한 태양광 모듈의 표면온도와 태양광 발전량과의 관계에 대한 연구)

  • Cho, Sung-Woo
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.14 no.3
    • /
    • pp.8-14
    • /
    • 2018
  • PV module power is calculated on PV module surface temperature adjustment by irradiation on the summer and autumn in NOCT(Nominal Operating Cell Temperature) conditions. The summer and autumn periods were selected because of large variation in outdoor air temperature and irradiation. This study was performed to understand relationship between PV module surface temperature and photovoltaic power using field measurement. As a results, it was determined that the amount of irradiation was proportional to the amount of photovoltaic power in the field measurement. However, it was also identified that the PV power generation decreased by increased PV module surface temperatures due to irradiation.

Experimental Study on the MIMO Control Algorithm of a Multi-Heat Pump Based on PRBS Identification Scheme (PRBS 시스템 규명 기법 적용 멀티 열펌프의 다중입출력 제어특성에 관한 실험적 연구)

  • Choi, Jong Min
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.9 no.2
    • /
    • pp.16-24
    • /
    • 2013
  • A multi-heat pump provides the benefits of comfort, energy conservation and easy maintenance. Recently, the multi-heat pump has been widely employed in small and medium-sized buildings. However, the control algorithm of the multi-heat pump are limited in the open literature due to complicated operating conditions. In this study, the MIMO control algorithm using integral optimum regulator was designed and the control performance of it was analyzed. In addition, system model of the control plant was developed by PRBS system identification scheme. The MIMO controller adopting the integral optimum regulator yielded satisfactory control performance results.

Simulation Study for Control Strategies of Indoor Air Temperature in Floor Radiant Heating System (바닥 복사난방 시스템의 실내온도 제어방안에 관한 시뮬레이션 연구)

  • Song, Jae-Yeob;Ahn, Byung-Cheon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.12 no.4
    • /
    • pp.21-26
    • /
    • 2016
  • In this study, the control strategies of indoor air temperature in floor radiant heating system were researched by computer simulation. The temperature difference based time control method using the difference of indoor set temperature and indoor temperature is compared with the existing On-Off control one for heating control performances. As a result, the temperature difference based time control method shows better thermal environmental characteristics in case of selected operational conditions in comparison with existing control one.

A Study on the Cooling Heating Performance Experiment by Refrigerant Auto Control of Geothermal Heat Pump (지열히트펌프 냉매자동조절에 따른 냉·난방 성능실험에 관한 연구)

  • Koo, Nam-Yeol;Seo, Seung-Il
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.11 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • This study presents analysis of the experimental data meeting conditions of several applications in real time. The results of this experimental study are as follows: Respectively in cooling and heating performance, a refrigerant charge tank can take automatic control of variation of the refrigerant quantity by controling pressure and temperature of system and outlet water temperature. The COP shows 3.5 in cooling operation and 3.2 in heating operation. The refrigerant quantity increases 0.69 kJ/h. When the outdoor temperature decreases $1^{\circ}C$, Therefore if the temperature become lower from $25^{\circ}C$ to $-16^{\circ}C$, the refrigerant quantity increases about 9.5%. Compared to the normal state experiment results, the COP in automatic control of the refrigerant quantity rises roughly 10%.