• Title/Summary/Keyword: Hydrostatic pressure receptor

Search Result 3, Processing Time 0.015 seconds

Brain Vesicle Structure and Formation of the Hydrostatic Pressure Receptors in Larvae of the Ascidian (Halocynthia roretzi) (우렁쉥이(Halocynthia roretzi) 유생의 뇌포 구조와 수압수용쳬의 형성)

  • Kim Jung-Eun;Seo Hyeong-Joo;Kim Gil-Jung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.39 no.2
    • /
    • pp.94-99
    • /
    • 2006
  • The tadpole larvae of most ascidians have two sensory pigment cells in their brain vesicle. The anterior otolith pigment cell is sensitive to gravity, whereas the posterior ocellus pigment cell responds to light. Besides these two sensory cells, the larvae also possess another type of sensory receptor cell: hydrostatic pressure receptor (Hpr) cells. The Hpr cells have been presumed to sense hydrostatic water pressure, although no functional analysis has been performed. In larvae of the ascidian Halocynthia reretzi, the development of the Hpr cells and their structure in the brain vesicle are poorly understood. To investigate the morphology and formation of the Hpr cells, we established a monoclonal antibody, Hpr-1, that specifically recognizes Hpr cells. The Hpr-1 antigens became detectable in the brain vesicle at the late tailbud stage. Each Hpr cell projected a small globular body, connected by a short stalk, into the lumen of the brain vesicle. The brain vesicle showed remarkable left-right asymmetry. Pigment cells were located on the right side in the lumen of the brain vesicle, whereas Hpr cells were present in the left side. After metamorphosis, the Hpr cells were observed near the rudimental siphons of the juvenile.

Role of FGF and MEK Signaling in Formation of the Hydrostatic Pressure Receptor Cells during Ascidian Embryogenesis (멍게의 수압수용체세포 형성에서 FGF와 MEK 신호의 역할)

  • Seo, Hyeong-Joo;Kim, Gil-Jung
    • Development and Reproduction
    • /
    • v.13 no.4
    • /
    • pp.291-296
    • /
    • 2009
  • In most larvae of ascidian, two sensory pigment cells, otolith and ocellus, lie in their brain vesicle. They also have a third type of sensory cells: hydrostatic pressure receptor (Hpr) cells. The Hpr cells were presumed to be hydrostatic pressure-detection cells, but their precise functions is still disputed. In this study, we investigated whether an FGF signaling is involved in formation of Hpr cells. When fertilized eggs were injected with Hr-FGF9/16/20 antisense MO, the resulting larvae showed severe abnormalities with no expression of the Hpr cell-specific Hpr-1 antigen. Similar results were obtained using an FGF receptor inhibitor, SU5402, and an MEK inhibitor, U0126. Embryos treated with SU5402 or U0126 during the 32-cell and hatching stages did not express the Hpr-1 antigen. To elucidate the temporal requirement for the FGF signaling in formation of Hpr cells, embryos were treated with SU5402 for 2 h, or U0126 for 20 min during various embryonic stages. Larvae treated with SU5402 from the 16-cell stage to the 64-cell stage did not express the Hpr-1 antigen, whereas those treated at the early gastrula stage expressed the Hpr-1 antigen. When U0126 treatment was carried out at various stages between the 8-cell and late gastrula stages, larvae scarcely formed the Hpr cells. They showed expression of the Hpr-1 antigen when embryos were placed in U0126 just before the neural plate stage. These results suggest that FGF9/16/20 signaling is involved in formation of Hpr cells from the primary neural induction stage to the late gastrula stage.

  • PDF

High Hydrostatic Pressure Extract of Red Ginseng Attenuates Inflammation in Rats with High-fat Diet Induced Obesity

  • Jung, Sunyoon;Lee, Mak-Soon;Shin, Yoonjin;Kim, Chong-Tai;Kim, In-Hwan;Kim, Yangha
    • Preventive Nutrition and Food Science
    • /
    • v.20 no.4
    • /
    • pp.253-259
    • /
    • 2015
  • Chronic low-grade inflammation is associated with obesity. This study investigated effect of high hydrostatic pressure extract of red ginseng (HRG) on inflammation in rats with high-fat (HF) diet induced obesity. Male, Sprague-Dawley rats (80~110 g) were randomly divided into two groups, and fed a 45% HF diet (HF) and a 45% HF diet containing 1.5% HRG (HF+HRG) for 14 weeks. At the end of the experiment, the serum leptin level was reduced by the HRG supplementation. The mRNA expression of genes related to adipogenesis including peroxisome proliferator-activated receptor-gamma and adipocyte protein 2 was down-regulated in the white adipose tissue (WAT). The mRNA levels of major inflammatory cytokines such as tumor necrosis factor-${\alpha}$, monocyte chemoattractant protein 1, and interleukin-6 were remarkably down-regulated by the HRG in WAT. These results suggest that HRG might be beneficial in ameliorating the inflammation-associated health complications by suppressing adipogenic and pro-inflammatory gene expression.