• 제목/요약/키워드: Hydrophone

검색결과 169건 처리시간 0.024초

Development of a Broadband Self-recording Hydrophone

  • Kim, Bong-Chae
    • Ocean and Polar Research
    • /
    • 제28권2호
    • /
    • pp.145-151
    • /
    • 2006
  • A broadband self-recording hydrophone was developed to conveniently assemble a hydrophone array for use in receiving underwater sound waves. A trigger device with an electromagnetic induction coupler was also developed to control the hydrophone's operation. Main configurations and specifications of the self-recording hydrophone are introduced in this paper. We present experiment results conducted in a water tank to examine the operating behavior of the hydrophone. Some advantages are discussed when the self-recording hydrophones are used to make up a hydrophone array.

휴대용 수중청음기 배열 시스템의 개발 (Development of a Portable Hydrophone Array System)

  • 김봉채
    • 한국음향학회지
    • /
    • 제25권4호
    • /
    • pp.178-183
    • /
    • 2006
  • 수중음장의 공간적인 분포를 측정하거나 해양에서 음파의 도래방향을 탐지하기 위하여 수중청음기 배열을 사용하고 있다. 그런데 수중청음기 배열은 일반적으로 규모가 크고 가격도 고가이다. 그래서 수중청음기 배열을 다루기가 편리하지 못하고, 구입하기도 쉽지 않다. 수중청음기 배열을 간편하게 구성하여 수중음파를 수신하는 데 사용할 목적으로 수중청음기와 데이터 로거가 일체형인 수중청음기 로거를 개발하였다. 그리고 수중청음기 로거로 구성된 수중청음기 배열 시스템을 개발하였다. 이 논문에서는 개발된 수중청음기 로거 및 수중청음기 배열 시스템의 구성에 대하여 보고한다. 또한 수중청음기 로거의 수조실험 결과 및 수중청음기 배열 시스템에 의한 해수중 주위잡음의 측정 예에 대하여 고찰한다. 그리고 이 수중청음기 배열 시스템을 사용할 때 편리한 점에 대해 기술한다.

A Study on Fiber Optic Hydrophone with Double Interferometers for Optical Path Length Compensation

  • Kim, Jeong-suk;Yoon, Hyun-gyu;Seol, Jae-soo
    • The Journal of the Acoustical Society of Korea
    • /
    • 제21권1E호
    • /
    • pp.25-30
    • /
    • 2002
  • We report on the development of a fiber optic hydrophone consists of a sensing Michelson interferometer and a compensating Mach-Zehnder interferometer for optical path length compensation. The double interferometer configuration has the following advantages: the hydrophone can be made more small; a laser source with a relatively short coherence length can be used; and the compensating interferometer can be located near the signal processing electronics, far away from the sensing interferometer and noise introduced by reference arm can be greatly reduced. The performance of the hydrophone is evaluated experimentally by immersing the sensing interferometer in a water tank to detect underwater acoustic signals generated by an acoustic wave projector. Experimental results show that over the frequency range of 1 to 4 kHz, the hydrophone has an almost flat response with an average normalized sensitivity of -302 dB re 1/ μ Pa.

Design and Evaluation of Noise Suppressing Hydrophone

  • Im, Jong-in
    • 한국자기학회:학술대회 개요집
    • /
    • 한국자기학회 2000년도 International Symposium on Magnetics The 2000 Fall Conference
    • /
    • pp.546-560
    • /
    • 2000
  • This paper describes the design and evaluation of a noise suppressing hydrophone that is robust to external noise without sacrificing its performance as a receiver. To increase robustness of the receiver to the external noise, first, effects of location of external noise on its performance are analyzed with the finite element method (FEM). Based on the results, geometrical variations are implemented on the structure with additional air pockets and damping layers that work as acoustic shields or scatterers of the noise, and fourteen trial models are developed for the noise suppressing hydrophone structures. The results show that the effect of the external noise is most significant when it is applied to near the mid-side surface of the hydrophone housing. The external noise is isolated most efficiently when two thin damping layers combined with five air pockets are inserted to the circumference of the hydrophone housing. Overall, of the fourteen structural variations of the hydrophone, the best one shows about 87% reduction in the response of the original structure to external noise.

  • PDF

실험을 통한 소형 고감도 광섬유 하이드로폰의 감지성능 연구 (Experimental Study on Signal Sensing of a High Sensitive Fiber Optic Hydrophone)

  • 김정석;윤형규;설재수
    • 소음진동
    • /
    • 제9권6호
    • /
    • pp.1152-1156
    • /
    • 1999
  • In this study, a fiber optic air-backed mandrel hydrophone has been constructed and performance of acoustic signal detection has been measured. The hydrophone is based on a Mach-Zehnder interferometer with 35 m of sensing fiber. The sensitivity is measured up to -128 dB re rad/$\mu$ Pa in range from 1.4 kHz to5 kHz. A system with this design of hydrophone may be applied to detect low frequency underwater acoustic signals.

  • PDF

매설형 하이드로폰 시스템의 구조-음향 연성 해석 (Structural-Acoustic Coupled Analysis of Buried Hydrophone System)

  • 서희선;조요한;조치영
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.1090-1095
    • /
    • 2007
  • A study was carried out to investigate the fluid-structure interaction phenomena of buried hydrophone system that exposed complex loads due to handling, transportation and installation. The buried hydrophone system has necessarily neighborhood structures for installation. Because of the neighborhood structure, acoustic field is deformed. We analyze the piezoelectric-structural-acoustic coupled problem and the results to use a finite element analysis software, ANSYS, which has an coupled field analysis capability. The effect of the component of hydrophone system is revealed altogether in pressure distribution. So, we classify and analyze the problem by four different compositions for decomposition.

  • PDF

중공 원통형 광섬유 하이드로폰의 감도 해석 (Sensitivity Analysis of Fiber Optic Hydrophone for Hollow Cylindrical Mandrel)

  • 김정석;윤형규;설재수;남성현
    • 소음진동
    • /
    • 제9권3호
    • /
    • pp.565-569
    • /
    • 1999
  • Recently, fiber optic hydrophone is a subject which has attracted as a underwater acoustic sensor. In this study, Finite element modeling of fiber optic hydrophone for hollow cylindrical mandrel was performed and the acoustic sensitivity was calculated to estimate the performance of single element fiber optic hydrophone. And acoustic sensitivity was measured in acoustic water tank to verify the result of simulation. The result of FE analysis and experiment is -126 dB re rad/$\mu$ Pa and -128 dB re rad/$\mu$ Pa respectively.

  • PDF

매설형 하이드로폰 시스템의 구조-음향 연성 해석 (Structural-acoustic Coupled Analysis of Buried Hydrophone System)

  • 서희선;조요한;조치영
    • 한국소음진동공학회논문집
    • /
    • 제17권9호
    • /
    • pp.797-804
    • /
    • 2007
  • A study was carried out to investigate the fluid-structure interaction phenomena of buried hydrophone system that exposed complex loads due to handling, transportation and installation. The buried hydrophone system has necessarily neighborhood structures for installation. Because of the neighborhood structure, acoustic field is deformed. We analyze the piezoelectric-structural-acoustic coupled problem and the results to use a finite element analysis software, ANSYS, which has an coupled field analysis capability. The effect of the component of hydrophone system is revealed altogether in pressure distribution. So, we classify and analyze the problem by four different compositions for decomposition.

초음파 핑거를 이용한 수파기 좌표의 보정 (Calibration of hydrophone Coordinates by the Telemetry techniques)

  • 신현옥
    • 수산해양기술연구
    • /
    • 제28권3호
    • /
    • pp.252-261
    • /
    • 1992
  • The accuracy of the position fixing with telemetry techniques depends in general on the accuracy of the location of the receiving point(hydrophone). To increase the accuracy of the coordinates of four hydrophones suspended down at both sides of the vessel anchored, each hydrophone motion is compensated using a depth pinger mounted on the seabed of 30m depth. The pinger location is calculated with a hyperbolic method. Using this technique so called hydrophone coordinates calibration, the movement of the Remotely Operated Vehicle(ROV), which has the same type of pinger mentioned above could be tracked down more accurately. Under the maximum variation ranges of a hydrophone of 5.2m in athwartships, 3.2m in alongship, and about 0.2m/s of the moving velocity in both directions, the ROV track with calibration is more close to the reality than that without calibration Tow depth pingers of same frequency can be distinguished by the use of three factors; The pulse period, the phase and the pulse period variation allowed in acquisition of the pinger as far as its pulse period is varied in smooth.

  • PDF