• Title/Summary/Keyword: Hydrophone

Search Result 168, Processing Time 0.032 seconds

Development of a Broadband Self-recording Hydrophone

  • Kim, Bong-Chae
    • Ocean and Polar Research
    • /
    • v.28 no.2
    • /
    • pp.145-151
    • /
    • 2006
  • A broadband self-recording hydrophone was developed to conveniently assemble a hydrophone array for use in receiving underwater sound waves. A trigger device with an electromagnetic induction coupler was also developed to control the hydrophone's operation. Main configurations and specifications of the self-recording hydrophone are introduced in this paper. We present experiment results conducted in a water tank to examine the operating behavior of the hydrophone. Some advantages are discussed when the self-recording hydrophones are used to make up a hydrophone array.

Development of a Portable Hydrophone Array System (휴대용 수중청음기 배열 시스템의 개발)

  • Kim Bong-Chae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.178-183
    • /
    • 2006
  • A hydrophone away is used to measure spatial distribution in underwater sound field and to detect incoming direction of sound waves in the ocean. It is not usually convenient to handle the hydrophone away because of its extensive scale. And it is not easy to purchase the hydrophone away because of expensive price. A hydrophone logger combined with a hydrophone and data logger was developed to consist conveniently of a hydrophone away for use to receive underwater sound waves. And a hydrophone array system with the hydrophone loggers was developed. Main configurations of the hydrophone 1o99er and the hydrophone array system are introduced in this paper. Also we present some measurement results by the hydrophone logger in a water tank and measurement examples on ambient noise in the sea by the hydrophone away system. And we discuss some advantages in use of the hydrophone array system.

A Study on Fiber Optic Hydrophone with Double Interferometers for Optical Path Length Compensation

  • Kim, Jeong-suk;Yoon, Hyun-gyu;Seol, Jae-soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.1E
    • /
    • pp.25-30
    • /
    • 2002
  • We report on the development of a fiber optic hydrophone consists of a sensing Michelson interferometer and a compensating Mach-Zehnder interferometer for optical path length compensation. The double interferometer configuration has the following advantages: the hydrophone can be made more small; a laser source with a relatively short coherence length can be used; and the compensating interferometer can be located near the signal processing electronics, far away from the sensing interferometer and noise introduced by reference arm can be greatly reduced. The performance of the hydrophone is evaluated experimentally by immersing the sensing interferometer in a water tank to detect underwater acoustic signals generated by an acoustic wave projector. Experimental results show that over the frequency range of 1 to 4 kHz, the hydrophone has an almost flat response with an average normalized sensitivity of -302 dB re 1/ μ Pa.

Design and Evaluation of Noise Suppressing Hydrophone

  • Im, Jong-in
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2000.09a
    • /
    • pp.546-560
    • /
    • 2000
  • This paper describes the design and evaluation of a noise suppressing hydrophone that is robust to external noise without sacrificing its performance as a receiver. To increase robustness of the receiver to the external noise, first, effects of location of external noise on its performance are analyzed with the finite element method (FEM). Based on the results, geometrical variations are implemented on the structure with additional air pockets and damping layers that work as acoustic shields or scatterers of the noise, and fourteen trial models are developed for the noise suppressing hydrophone structures. The results show that the effect of the external noise is most significant when it is applied to near the mid-side surface of the hydrophone housing. The external noise is isolated most efficiently when two thin damping layers combined with five air pockets are inserted to the circumference of the hydrophone housing. Overall, of the fourteen structural variations of the hydrophone, the best one shows about 87% reduction in the response of the original structure to external noise.

  • PDF

Experimental Study on Signal Sensing of a High Sensitive Fiber Optic Hydrophone (실험을 통한 소형 고감도 광섬유 하이드로폰의 감지성능 연구)

  • 김정석;윤형규;설재수
    • Journal of KSNVE
    • /
    • v.9 no.6
    • /
    • pp.1152-1156
    • /
    • 1999
  • In this study, a fiber optic air-backed mandrel hydrophone has been constructed and performance of acoustic signal detection has been measured. The hydrophone is based on a Mach-Zehnder interferometer with 35 m of sensing fiber. The sensitivity is measured up to -128 dB re rad/$\mu$ Pa in range from 1.4 kHz to5 kHz. A system with this design of hydrophone may be applied to detect low frequency underwater acoustic signals.

  • PDF

Structural-Acoustic Coupled Analysis of Buried Hydrophone System (매설형 하이드로폰 시스템의 구조-음향 연성 해석)

  • Seo, Hee-Seon;Cho, Yo-Han;Joh, Chee-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1090-1095
    • /
    • 2007
  • A study was carried out to investigate the fluid-structure interaction phenomena of buried hydrophone system that exposed complex loads due to handling, transportation and installation. The buried hydrophone system has necessarily neighborhood structures for installation. Because of the neighborhood structure, acoustic field is deformed. We analyze the piezoelectric-structural-acoustic coupled problem and the results to use a finite element analysis software, ANSYS, which has an coupled field analysis capability. The effect of the component of hydrophone system is revealed altogether in pressure distribution. So, we classify and analyze the problem by four different compositions for decomposition.

  • PDF

Sensitivity Analysis of Fiber Optic Hydrophone for Hollow Cylindrical Mandrel (중공 원통형 광섬유 하이드로폰의 감도 해석)

  • 김정석;윤형규;설재수;남성현
    • Journal of KSNVE
    • /
    • v.9 no.3
    • /
    • pp.565-569
    • /
    • 1999
  • Recently, fiber optic hydrophone is a subject which has attracted as a underwater acoustic sensor. In this study, Finite element modeling of fiber optic hydrophone for hollow cylindrical mandrel was performed and the acoustic sensitivity was calculated to estimate the performance of single element fiber optic hydrophone. And acoustic sensitivity was measured in acoustic water tank to verify the result of simulation. The result of FE analysis and experiment is -126 dB re rad/$\mu$ Pa and -128 dB re rad/$\mu$ Pa respectively.

  • PDF

Structural-acoustic Coupled Analysis of Buried Hydrophone System (매설형 하이드로폰 시스템의 구조-음향 연성 해석)

  • Seo, Hee-Seon;Cho, Yo-Han;Joh, Chee-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.9
    • /
    • pp.797-804
    • /
    • 2007
  • A study was carried out to investigate the fluid-structure interaction phenomena of buried hydrophone system that exposed complex loads due to handling, transportation and installation. The buried hydrophone system has necessarily neighborhood structures for installation. Because of the neighborhood structure, acoustic field is deformed. We analyze the piezoelectric-structural-acoustic coupled problem and the results to use a finite element analysis software, ANSYS, which has an coupled field analysis capability. The effect of the component of hydrophone system is revealed altogether in pressure distribution. So, we classify and analyze the problem by four different compositions for decomposition.

Calibration of hydrophone Coordinates by the Telemetry techniques (초음파 핑거를 이용한 수파기 좌표의 보정)

  • 신현옥
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.28 no.3
    • /
    • pp.252-261
    • /
    • 1992
  • The accuracy of the position fixing with telemetry techniques depends in general on the accuracy of the location of the receiving point(hydrophone). To increase the accuracy of the coordinates of four hydrophones suspended down at both sides of the vessel anchored, each hydrophone motion is compensated using a depth pinger mounted on the seabed of 30m depth. The pinger location is calculated with a hyperbolic method. Using this technique so called hydrophone coordinates calibration, the movement of the Remotely Operated Vehicle(ROV), which has the same type of pinger mentioned above could be tracked down more accurately. Under the maximum variation ranges of a hydrophone of 5.2m in athwartships, 3.2m in alongship, and about 0.2m/s of the moving velocity in both directions, the ROV track with calibration is more close to the reality than that without calibration Tow depth pingers of same frequency can be distinguished by the use of three factors; The pulse period, the phase and the pulse period variation allowed in acquisition of the pinger as far as its pulse period is varied in smooth.

  • PDF