• Title/Summary/Keyword: Hydrophillic Delivery System

Search Result 2, Processing Time 0.015 seconds

A Study on the Control of Pseudoephedrine Hydrochloride Release from Hydroxypropylmethylcellulose Matrices (Hydroxypropylmethylcellulose로부터 염산슈도에페드린의 방출조절에 관한 연구)

  • Cho, Hoon;Bang, Moon-Soo;Chung, Yongseog
    • Applied Chemistry for Engineering
    • /
    • v.10 no.2
    • /
    • pp.201-205
    • /
    • 1999
  • Hydroxypropylmethylcelluloses (HPMC) are cellulose ethers which may be used as the basis for hydrophilic matrices for controlled release oral delivery and offer the advantages of being non-toxic and relatively inexpensive. In this work, we designed new drug release system using HPMC as matrix, manufactured by direct compression technology and have investigated the effects of the controlling factors on drug release from a swellable hydrophillic delivery system. It was found that the release rate of the drug decreased with increasing the polymer molecular weight and the polymer content in tablets, and was independent of compaction pressure and pH of dissolution fluids. Especially, the ability of the anionic surfactant, sodium laurylsulfate, to retard the release of pseudoephedrine hydrochloride from HPMC was characterised. With increasing the concentration of the sodium laurylsulfate within the matrix, drug release rate decreased. It is believed that, provided the pseudoephedrine hydrochloride and the sodium laurylsulfate are oppositely charged, they will bind together in situ within the HPMC matrix, leading to reduced drug release rates.

  • PDF

Polymeric Micelle Using Poly((R)-3-hydroxybutyric acid)/Poly(ethylene glycol) Amphiphilic Block Copolymer for Drug Delivery System (Poly((R)-3-hydroxybutyric acid)/Poly(ethylene glycol) 양친성 블록 공중합체를 이용한 약물전달체용 고분자 미셀)

  • Jeong, Kwan-Ho;Kim, Young-Jin
    • Polymer(Korea)
    • /
    • v.30 no.6
    • /
    • pp.512-518
    • /
    • 2006
  • A biodegradable polymer poly((R) -3-hydroxybutyric acid) (PHB) was conjugated with a hydrophilic polymer poly(ethylene glycol) (PEG) by the ttansesterification reaction to form the amphiphilic block copolymer. PHB with low molecular weight ($3000{\sim}30000$) was appropriated for the drug delivery materials. High molecular weight PHB was hydrolyzed by an acid-catalyst to produce the low molecular weight one. Amphiphilic block copolymer was formed the self-assembled polymeric micelle system in the aqueous solution that the hydrophillic PEG was wraped the hydrophobic PHB. Generally, polymeric micelle forms the small particle between $10{\sim}200nm$. These polymeric micelle systems have been widely used for the drug delivery systems because they were biodegradable, biocompatible, non-toxic and patient compliant. The hydroxyl group of PEG was substituted with carboxyl group which has the reactivity to the ester group of PHB. Amphiphilic block copolymer was conjugated between PHB, and modified PEG at $176^{\circ}C$ which was higher than the melting point of PHB. Transesterification reaction was verified with DSC, FTIR, $^1H-NMR$. In the aqueous solution, critical micelle concentration (CMC) of the mPEG-co-PHB copolymer measured by the fluororescence scanning spectrometer was $5{\times}10^{-5}g/L$. The shape and size of the nanoparticle was taken by dynamic light scattering and atomic force microscopy. The size of the nanoparticle was about 130 nm and the shape was spherical. Our polymeric micelle system can be used as the passive targeting drug delivery system.