• 제목/요약/키워드: Hydrophilic dendrons

검색결과 4건 처리시간 0.019초

Thermal and Solid State Assembly Behavior of Amphiphilic Aliphatic Polyether Dendrons with Octadecyl Peripheries

  • Chung, Yeon-Wook;Lee, Byung-Ill;Cho, Byoung-Ki
    • Macromolecular Research
    • /
    • 제16권2호
    • /
    • pp.113-119
    • /
    • 2008
  • A series of amphiphilic dendrons n-18 (n: generation number, 18: octadecyl chain) based on an aliphatic polyether denderitic core and octadecyl peripheries were synthesized using a convergent dendron synthesis consisting of a Williamson etherification and hydroboration/oxidation reactions. This study investigated their thermal and self-assembling behavior in the solid state using differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR) absorption spectroscopy, and small angle X-ray scattering (SAXS). DSC indicated that the melting transition and the corresponding heat of the fusion of the octadecyl chain decreased with each generation. FT-IR showed that the hydroxyl focal groups were hydrogen-bonded with one another in the solid state. DSC and FT-IR indicated microphase-separation between the hydrophilic dendritic cores and hydrophobic octadecyl peripheries. SAXS data analysis in the solid state suggested that the lower-generation dendrons 1-18 and 2-18 self-assemble into lamellar structures based upon a bilayered packing of octadecyl peripheries. In contrast, the analyzed data of higher-generation dendron 3-18 is consistent with 2-D oblique columnar structures, which presumably consist of elliptical cross sections. The data obtained could be rationalized by microphase-separation between the hydrophilic dendritic core and hydrophobic octadecyl peripheries, and the degree of interfacial curvature associated with dendron generation.

Self-Organization of Dendron-Poly(ethylene glycol) Conjugates in an Aqueous Phase

  • Kim, Kyoung-Taek;Lee, Im-Hae;Park, Chiyoung;Song, Yu-Mi;Kim, Chul-Hee
    • Macromolecular Research
    • /
    • 제12권5호
    • /
    • pp.528-533
    • /
    • 2004
  • We have prepared amide dendrons having alkyl peripheral units and various focal moieties through a convergent synthetic approach. The amphiphilic properties, due to hydrophilic amide branches and the hydrophobic peripheral units, provide an opportunity for the amide dendrons to self-organize in water. The dendritic architecture itself is also one of the critical factors in the self-organization of the amide dendrons in water. In particular, function-alization was performed at the focal point to elucidate the relationship between the focal functionality and the self-organized structures of the dendritic building blocks in the aqueous phase. The dendron having a short poly(ethylene glycol) monomethyl ether (MeO-PEG) unit (M$\_$n/ =750) as the focal moiety formed a vesicular organization in water. As the size of the hydrophilic focal MeO-PEG increased to M$\_$n/ =2,000 and 5,000, the self-organized structures became rod-type and spherical micelles, respectively. Our observation of multiple morphologies for amide dendrons is in good agreement with previous reports that indicated that the micellar structures changed from vesicles to rod-types and then to spheres upon increasing the size of the hydrophilic moiety of the amphiphiles.

Synthesis of Diblock Codendrimer by Double Click Chemistry

  • Lee, Jae Wook;Han, Seung Choul;Ji, Won Ho;Jin, Sung-Ho;Kim, Ji Hyeon
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권12호
    • /
    • pp.4103-4108
    • /
    • 2012
  • Efficient double click methods for the synthesis of diblock codendrimers were developed. The synthetic strategy involved the sequential click reactions between an alkyne and an azide. The short core building block, 1,4-diazidobutane, was chosen to serve as the azide functionalities for dendrimer growth via click reactions with the alkyne-functionalized PAMAM dendrons as hydrophilic dendron and alkyne-functionalized Fr$\acute{e}$chet-type dendrons as hydrophobic dendron. The structure of diblock codendrimers was confirmed by $^1H$ and $^{13}C$ NMR spectroscopy, IR spectroscopy, mass spectrometry, and GPC analysis.