• Title/Summary/Keyword: Hydrological cycle

Search Result 151, Processing Time 0.026 seconds

Estimation of Crop Yield and Evapotranspiration in Paddy Rice with Climate Change Using APEX-Paddy Model (APEX-Paddy 모델을 이용한 기후변화에 따른 논벼 생산량 및 증발산량 변화 예측)

  • Choi, Soon-Kun;Kim, Min-Kyeong;Jeong, Jaehak;Choi, Dongho;Hur, Seung-Oh
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.4
    • /
    • pp.27-42
    • /
    • 2017
  • The global rise in atmospheric $CO_2$ concentration and its associated climate change have significant effects on agricultural productivity and hydrological cycle. For food security and agricultural water resources planning, it is critical to investigate the impact of climate change on changes in agricultural productivity and water consumption. APEX-Paddy model, which is the modified version of APEX (Agricultural Policy/Environmental eXtender) model for paddy ecosystem, was used to evaluate rice productivity and evapotranspiration based on climate change scenario. Two study areas (Gimjae, Icheon) were selected and the input dataset was obtained from the literature. RCP (Representitive Concentration Pathways) based climate change scenarios were provided by KMA (Korean Meteorological Administration). Rice yield data from 1997 to 2015 were used to validate APEX-Paddy model. The effects of climate change were evaluated at a 30-year interval, such as the 1990s (historical, 1976~2005), the 2025s (2011~2040), the 2055s (2041~2070), and the 2085s (2071~2100). Climate change scenarios showed that the overall evapotranspiration in the 2085s reduced from 10.5 % to 16.3 %. The evaporations were reduced from 15.6 % to 21.7 % due to shortend growth period, the transpirations were reduced from 0.0% to 24.2 % due to increased $CO_2$ concentration and shortend growth period. In case of rice yield, in the 2085s were reduced from 6.0% to 25.0 % compared with the ones in the 1990s. The findings of this study would play a significant role as the basics for evaluating the vulnerability of paddy rice productivity and water management plan against climate change.

Stable Isotope Studies for Constraining Water and Carbon Cycles in Terrestrial Ecosystems: A Review (안정 동위원소를 이용한 육상 생태계의 물과 탄소의 순환 연구: 재검토)

  • Lee Dongho
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.7 no.1
    • /
    • pp.15-27
    • /
    • 2005
  • The water and carbon cycles in terrestrial ecosystems are the essential database for better understanding of the causes and the current processes of climate change and for the prediction of its future change. CarboKorea and HydroKorea are dedicated research efforts to develop technologies to quantitatively interpret and forecast carbon/water cycles in typical landscapes of Korea. For this, stable isotope studies have been launched to genetically partition various components of carbon/water cycles in terrestrial ecosystems. From stable isotope studies, practical deliverables such as evaporation, transpiration and gross primary productivity (GPP) can be provided at scales from tower (footprint) to large watersheds. Such reliable field-based information will form an important database to be used for validation of the results from various eco-hydrological models and satellite image analysis which constitute main components of Carbo/HydroKorea project. Stable isotope studies, together with other relevant researches, will contribute to derive quantitative interpretation of carbon/water cycles in terrestrial ecosystems and support Carbo/HydroKorea to become a leading research infrastructure to answer pending scientific and socio-economic questions in relation to global changes.

Estimation of the optimal evapotranspiration by using satellite- and reanalysis model-based evapotranspiration estimations (인공위성과 재분석모델 자료의 다중 증발산 자료를 활용하여 최적 증발산 산정 연구)

  • Baik, Jongjin;Jeong, Jaehwan;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.3
    • /
    • pp.273-280
    • /
    • 2018
  • Accurate estimation of evapotranspiration is mightily important for understanding and analyzing the hydrological cycle. There are various methods for estimating evapotranspiration and each method has its own advantages and limitations. Therefore, it is necessary to develop an optimal evapotranspiration product by combing different evapotranspiration products. In this study, we developed an optimal evapotranspiration by fusing two satellite- and model-based evapotranspiration estimates, including revised remote sensing-based Penman-Monteith (RS-PM) and Modified Satellite-Based Priestley-Taylor (MS-PT) methods, Global Land Data Assimilation System (GLDAS), and Global Land Evaporation Amsterdam Model (GLEAM). The statistical analysis (i.e., correlation coefficients, index of agreement, MAE, and RMSE) of combined evapotranspiration product showed to be improved compared to the individual model results. After confirming the overall results, in future studies, advanced data fusion techniques will be used to obtained improved results.

An Analysis on Landscape Structure and Biodiversity of the Bokha Stream as a Model to Restore the Degraded Urban Stream

  • Lee, Chang-Seok;Moon, Jeong-Suk;Woo, Hyo-Seop;Ahn, Hong-Gyu;Cho, Gang-Hyun;Bae, Yang-Seop;Byun, Hwa-Geun
    • Journal of Ecology and Environment
    • /
    • v.29 no.2
    • /
    • pp.113-124
    • /
    • 2006
  • Landscape structure, habitat types, vegetation structure and biodiversity in the Bokha stream chosen as a reference stream were investigated to get ecological information necessary for restoration of urban stream degraded by excessive artificial interference. Landscape structure showed a slight change between before and after flooding. Habitat types of nine sorts were identified based on ecological information obtained from field survey such as micro-topography, hydrological characteristics, disturbance regime, and so on. Each habitat holds specific organisms to each site. Consequently, the number of plant communities, and species of benthos and fish increased as the kinds of habitat type increase. Ordination of habitat types based on vegetation, benthos, and fish data reorganized them into three groups of pool types of two kinds depending on whether they are connected to the water course or not and riffle one. Vegetation showed different stratification and species composition depending on topographical position in relation to disturbance cycle. Based on the results from this study, relationship between environmental heterogeneity and biodiversity was discussed and a restoration plan was suggested in a viewpoint of vegetation.

VARIABILITY OF THE LATENT HEAT FLUX DURING 1988-2005

  • Iwasaki, Shinsuke;Kubota, Masahisa
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.289-292
    • /
    • 2008
  • Recently, several satellite data analyses projects and numerical weather prediction (NWP) reanalysis projects have produced the ocean surface Latent Heat Flux (LHF) data sets in the global coverage. Comparisons of these LHF data sets showed substantial discrepancies in the LHF values. Recently, the increase of LHF in during 1970s-1990s over the global ocean is shown by the LHF data that have been developed at the Objective Analyzed Air-Sea Fluxes (OAFlux) project. It is interesting to investigate the existence of the increase of LHF over a global ocean in the other LHF products. It is interesting to investigate the existence of the increase of LHF over a global ocean in the other LHF products. In this study, we assessed the consistencies and discrepancies of the inter-annual variability and decadal trend for the period 1988-2005 among six LHF products ((J-OFURO2, HOAPS3, IFREMER, NCEP1,2 and OAFlux) over the global ocean. As results, all LHF products showed a positive trend. In particular, the positive trend in satellite-based data analyses (J-OFURO2, HOAPS3, IFREMER) is larger than that in reanalysis products (NCEP1/2). Also, the consistencies and discrepancies are shown on the spatial patterns of the LHF trends across the six data sets. The positive trend of LHF is remarkable in the regions of western boundary currents such as the Kuroshio and the Gulf Stream in all LHF data sets. But, the discrepancies are shown on the spatial patterns of the LHF trends in tropics and subtropics. These discrepancies are primarily caused by the differences of the input meteorological state variables, particularly for the air specific humidity, used to calculate LHF.

  • PDF

Web-Based Data Processing and Model Linkage Techniques for Agricultural Water-Resource Analysis (농촌유역 물순환 해석을 위한 웹기반 자료 전처리 및 모형 연계 기법 개발)

  • Park, Jihoon;Kang, Moon Seong;Song, Jung-Hun;Jun, Sang Min;Kim, Kyeung;Ryu, Jeong Hoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.5
    • /
    • pp.101-111
    • /
    • 2015
  • Establishment of appropriate data in certain formats is essential for agricultural water cycle analysis, which involves complex interactions and uncertainties such as climate change, social & economic change, and watershed environmental change. The main objective of this study was to develop web-based Data processing and Model linkage Techniques for Agricultural Water-Resource analysis (AWR-DMT). The developed techniques consisted of database development, data processing technique, and model linkage technique. The watershed of this study was the upper Cheongmi stream and Geunsam-Ri. The database was constructed using MS SQL with data code, watershed characteristics, reservoir information, weather station information, meteorological data, processed data, hydrological data, and paddy field information. The AWR-DMT was developed using Python. Processing technique generated probable rainfall data using non-stationary frequency analysis and evapotranspiration data. Model linkage technique built input data for agricultural watershed models, such as the TANK and Agricultural Watershed Supply (AWS). This study might be considered to contribute to the development of intelligent watercycle analysis by developing data processing and model linkage techniques for agricultural water-resource analysis.

Design and Construction of Green Infrastructure-Low Impact Development Experimental Complex for Hydrological cycle (부산대학교 GI·LID 물순환 실증단지 계획 및 구축)

  • Lee, Jae-Hyuk;Yoon, Eui-Hyeok;Jang, Young-Su;Shin, Hyun-Suk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.319-319
    • /
    • 2016
  • 최근 급격한 기후변화와 도시화로 인하여 강우량 및 강우강도는 약 20% 증가하고 강우일수는 14% 감소하며 도시 기온이 최대 $3^{\circ}C$까지 증가하는 등의 현실적인 문제가 발생하고 있다. 이로 인한 도시 물순환체계의 파괴는 도시물관리 여건의 악화로 이어지고 특히 불투수면적 증가로 인한 도시 홍수 및 침수의 증가, 잦은 도시 고온 현상, 도시하천의 건천화로 수질 악화를 야기하는 실정이다. 이에 국토의 자연자원을 보전하고 기후변화에 적응하면서 도시의 안전도와 가치를 높이기 위한 물관리 정책은 먼저 물을 순환을 보다 적극적으로 반영하고 통합적인 물관리 체계 확보를 요구한다. 이를 위해서는 발생원 관리를 포함한 소규모 분산관리 체계로 변화하여야 하며 이들 시설에 대한 네트워크화를 통해 기후변화에 강건하고 통합관리쳬계를 구축하는 것이 중요하다. 이를 위해서는 저영향개발(LID, Low Impact Development) 및 그린인프라(GI, Green Infrastructure) 기반의 분산식 빗물관리기법의 도입이 절실하다. 현재 국내에서는 제도적으로 기후변화 대비, 지속가능한 도시환경 구축을 위한 물순환 건전화를 위해 100대 국정화제에 포함시키는 등(2013.2) 도시계획 및 기반시설 설치 LID기법의 법제적 산업적 도입을 추진중에 있으나, LID 기술의 수자원 치수, 이수 및 환경 효율성에 대한 객관적인 정보의 부재, LID 기술에 대한 효율성 검증 및 인증시스템의 부재, LID 기술의 무분별한 국외기술 도입으로 인한 효과 저감, LID 기술의 설계, 시공, 관리를 위한 매뉴얼 및 가이드라인의 부재, LID 기술에 대한 지자체 지원 및 전문가 양성 시스템의 부재 등 복합적인 문제를 안고 있어 GI 및 LID 기술의 적용을 통한 새로운 도시 및 유역차원의 수자원확보와 재해경감기술 패러다임 확보가 용이하지 않다. 이를 위해 본 연구에서는 강우유출수 관리를 위한 LID기술 신뢰도 향상 및 단일화, 표준화된 효율성 검증 기술 개발과 더 나아가서 도시-건축-수자원-도로-조경 등의 종합적인 인프라를 바탕으로 LID기술 통합관리 및 기술 고도화를 위해 부산대학교 GI LID 물순환 실증단지의 계획 및 구축을 수행하였다.

  • PDF

Analysis of Hydrological Cycle Effect in Nakdong River Basin Considering Climate Change (기후변화를 고려한 낙동강유역 물순환 영향 검토)

  • Tak, Yong Hun;Jung, Woo Suk;Kim, Young Do;Lee, Jong Mun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.37-37
    • /
    • 2019
  • 기후변화에 따른 강우량 변화는 유역의 수문학적 변화와 하천 침식, 토양유실 등 물리적 변화를 함께 동반하여 유역환경에 영향을 미치게 된다. 최근에도 강우 발생시 집중강우에 의해 짧은 시간에 많은 강우가 발생하여 홍수피해가 발생하고 있으며, 건기시에는 가뭄이 지속되고 있다. RCP 4.5 및 8.5를 활용한 미래 기후시나리오 예측에 따르면 강우량과 증발산량은 증가할 것으로 예측되고 있으나, 우기시의 강수량은 증가하고 건기시의 강수량은 감소하여 계절 간 강수의 불균형이 심화될 것으로 예측되고 있다. 이러한 변화는 강수량, 하천유량, 침투량 등 유역의 수문체계에 영향을 끼치게 되고, 유량의 변화에 따라 하상변동 등 하천형상의 변화가 발생할 수 있으며, 하천 형상변화에 따라 유량이 변화하고, 토사의 유입이 증가하여 수질이 변화하여, 유역 내 유량 및 수질변화에 따른 불확실성이 높아지게 된다. 최근 개발에 의한 불투수면의 증가와 집중호우의 발생으로 인한 유출량 증가에 따라 강우발생시 직접유출량은 증가하고 침투량은 감소하여 우기시에는 홍수 및 침수가 발생하고, 건기시에는 기저유출에 의한 하천유지용수가 감소하여 하천이 건천화되고 수질이 악화 되는 등 물순환 체계가 훼손되고 있다. 강수량과 강우패턴의 변화에 따른 유출량 변화는 유역의 물순환에 직접적인 영향을 미치게 된다. 홍수나 극한강우가 발생할 경우 유역의 수문학적 특성에 따라 직접유출량은 증가하고 상대적으로 침투 및 증발산양은 감소하게 되며, 건기시에는 하천이 건천화 되는 등 물순환 체계가 훼손되고 유량의 변화에 따라 수질 또한 악화될 수 있다. 본 연구에서는 낙동강 유역을 대상으로 기후변화에 따른 유역 유출량 변화 및 하천형상 변화예측을 위해 기후변화 시나리오를 이용하여 하천환경변화에 대한 전망을 예측하고, 유역의 유출량을 구체적으로 분석 할 수 있는 유역모형을 활용하여 유역의 물순환에 미치는 영향을 검토하고 물순환을 고려한 유량 및 수질부하량을 분석하였다.

  • PDF

Construction of Aquatic Environmental Database Near Wolsong Nuclear Power Plant (월성 원전 주변 수생 환경 자료 구축)

  • Suh, Kyung-Suk;Min, Byung-Il;Yang, Byung-Mo;Kim, Jiyoon;Park, Kihyun;Kim, Sora
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.2
    • /
    • pp.235-243
    • /
    • 2019
  • Radioactive materials are released into the air and deposited on the surface soil after a nuclear accident. Radionuclides deposited in soil are transported by precipitation to nearby environments and contaminate the surface water system. Basic data on surface watershed and soil erosion models have been collected and analyzed to evaluate the behavior of radionuclides deposited on surface soil after a nuclear accident. Data acquisition and analysis in aquatic environment were performed to investigate the physical characteristics and variation of biota in rivers and lakes of the Nakdong river area near the Wolsong nuclear power plant. For these purposes, a digital map, and hydrological, water quality and biota data were gathered and a systematic database (DB) was constructed in connection with them. Constructed aquatic DB will be supplied and used in surface watershed and soil erosion models for investigation of long-term movement of radionuclides in adsorptive form in surface soil. Finally, basic data and established models will be utilized for general radiological impact assessment in aquatic environment.

Analysis of the Linkage Effect by Component Technology in Low Impact Development Facilities (저영향개발 시설의 요소기술별 연계 효과 분석)

  • Baek, Jongseok;Lee, Sangjin;Shin, Hyunsuk;Kim, Jaemoon;Kim, Hyungsan
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.1
    • /
    • pp.35-42
    • /
    • 2019
  • Urbanization has led to extreme changes in land use on urban watersheds. Most cities are becoming residential, commercial and industrial areas, making infiltration and storage of rainfall less favorable. The demand for LID (Low Impact Development) technology is increasing in order to mitigate this water cycle distortion and return to existing hydrological conditions. The LID technique is effective in reducing runoff by permeating the urban impervious area. However, considering the limit of the installation area and the financial requirement of the installation, there is not much research on the linkage of each LID component technology for optimum efficiency according to the appropriate scale. In this study, the effects of the LID facilities applied to the target site were simulated using the SWMM model, suggesting the optimal linkage method considering interconnectivity, and applying the effects as an existing installation of individual facilities. The water balance at the time of application of the LID technology, short-term and long-term rainfall event were compared. Also, the individual application and the linkage application were compared with each other. If each component technology has sufficient processing size, then linkage application is more effective than individual application.