• Title/Summary/Keyword: Hydrologic model

Search Result 783, Processing Time 0.034 seconds

Evaluation of Reliability Hydrologic Investigation in Imha Basin Using Distributed Model (GIS 기반 분포형 유출모형을 이용한 임하댐 유역의 수문조사 신뢰도 검증)

  • Kim, Myung-Hyun;An, Hyung-Mo;Kim, Chang-Soon;Lee, Myung-Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1104-1108
    • /
    • 2010
  • 최근 수자원의 효율적인 배분을 위한 수자원관리의 중요성에 대한 인식과 하천의 환경적 기능에 대한 사회적 요구 증대로 수자원 기초조사에 의해 수집되어진 자료의 활용빈도가 다양한 분야에서 증가하고, 높은 신뢰도와 정확도를 요구하고 있다. 개발된 수위-유량 관계식의 신뢰도 검증은 일반적으로 지점별 수위-유량 관계식과 수위자료에 의해 산정된 유하량을 유역의 면적평균 강우량을 이용하여 산정한 유출률과 비교 분석하는 수문학적 방법에 의해 이루어지고 있는 실정이다. 최근에는 공간적인 비균질성을 고려하여 유출과정에서 운동역학적인 이론을 기반으로 물의 흐름을 수리학적으로 추적해 나가는 물리적 기반의 분포형 유출모형의 활용도가 높아지고 있음에 따라 본 연구에서는 낙동강수계 임하댐유역을 대상으로 물리적 기반의 분포형 모형인 $Vflo^{TM}$을 적용하여 유출량을 산정하고, K-water에서 수자원 환경기초조사 성과로 개발된 임하댐 상류 영양 수위관측소의 수위-유량 관계 곡선식을 이용하여 산정된 유출량과 비교함으로써 수자원기초조사 성과의 신뢰도를 검증하였다. 분포형 유출모형 적용에 필요한 매개변수 추출을 위해 GIS 기법을 이용하여 DEM, 토지피복도, 토양도에서 $Vflo^{TM}$의 입력인자인 경사도, 흐름방향, 조도계수, 수리전도도, 유효공극률, 토양심도를 추출 산정하였으며, 임하댐 유역의 8개 우량관측소 시우량자료를 이용하여 강우의 공간적인 통계 특성을 잘 반영하는 크리깅(Kriging) 기법에 의한 분포형 강우를 생성하였다. 또한, 본 모형을 통해 검증된 초기함수조건 등의 유역의 특성을 이용한 단기유량예측을 통하여 홍수량 예측 및 수문조사 효율성 향상에 매우 중요한 역할을 할 것으로 기대된다.

  • PDF

Analysis of Runoff Characteristics in the Youngdong Region Using a Distributed Hydrologic Model - I : Case study on O-sip cheon Basin in Samcheok - (분포형 모형을 이용한 영동지방의 유출특성 분석 - I : 삼척오십천 유역을 대상으로 -)

  • Noh, Hui-Seong;Jeung, Se-Jin;Lim, Joo-Ho;Choi, Jong-In;Kim, Byung-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.943-943
    • /
    • 2012
  • 태백산맥의 중심부인 중앙산맥을 경계로 하여 동쪽에 위치하고 있는 영동지방은 서쪽으로 태백산맥이, 동쪽으로는 동해바다와 바로 인접해 있는 지리적인 특성으로 인해 지역적 특성이 매우 강하며, 이에 따라 국지적 기상현상이 계절적 변화와 함께 빈번히 발생하는 지역이다. 2002년 태풍 루사가 영동지방을 강타했을 때 영동지방의 대표도시인 강릉지방에서는 기록적인 폭우(일최다 강수량 870.5mm)가 내렸으며, 그 다음해인 2003년 매미 뿐 아니라 최근발생하고 있는 국지적인 호우로 인한 영동지방의 피해가 지속적으로 발생하고 있다. 이러한 상황에서도 수문학적 관점에서의 홍수유출 및 강우특성에 대한 분석 및 연구가 거의 전무한 실정이다. 이것은 대상지역인 영동지방 특히 삼척오십천 유역내의 강우 및 수위 관측소가 간헐적으로 분포되어 있으며, 강우 및 수위(유량)자료의 확보가 용이하지 않기 때문으로 사료된다. 본 연구에서는 동해 강릉 기상레이더(2010.5 동해기상레이더 교체 이전)의 레이더강우자료와 지상강우 및 수위(유량)자료를 활용하고, 집중형 모형에 비해 더 정확한 강우-유출 현상 모의가 가능한 것으로 분석되고 있는 분포형 모형(Vflo$^{TM}$)을 이용하여 분석하였다. 먼저 영동지역 중 첫번째로 삼척오십천유역에 대한 유출분석을 하였으며, 과거 큰 홍수피해를 준 태풍 루사 매미 및 최근의 호우사상을 대상으로 하였다. 본 논문에서 연구된 삼척오십천유역에 대한 유출특성 분석을 시작으로, 양양남대천 강릉남대천에 대한 유출특성에 대한 연구를 추가로 수행된다면, 영동지방의 국지적 기상현상(집중호우 및 태풍)으로 인한 홍수피해를 최소화 할 수 있는 방재측면에서의 홍수대응방안을 마련하는데 본 연구내용을 충분히 활용할 수 있을 것이다.

  • PDF

Multi-objective Optimization of BMPs for Controlling Water Quality in Upper Basin of Namgang Dam (남강댐 상류유역 수질관리를 위한 BMPs의 다목적 최적화)

  • Park, Yoonkyung;Lee, Jae Kwan;Kim, Jeongsook;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.6
    • /
    • pp.591-601
    • /
    • 2018
  • Optimized BMP plans for controlling water quality using the Pareto trade-off surface curve in upper basin of Namgang Dam is proposed. The proposed alternatives consist of BMP installation scenarios in which the reduction efficiency of non-point pollutants is maximized in a given budget. The multi-objective optimization process for determining the optimal alternatives was performed without direct implementation of a watershed model such as SWAT analysis, thereby reducing the time taken. The shortening of the calculation time further enhances the applicability of the multi-objective optimization technique in preparing regional water quality management alternatives. In this study, different types of BMP are applied depending on the land use conditions. Fertilizer input control and vegetative filter strip are considered as alternatives to applying BMP to the field but only control of fertilizer input can be applied to rice paddies. Fertilizer input control and vegetative filter strip can be installed separately or simultaneously in a hydrologic response unit. Finally, 175 BMP application alternatives were developed for the water quality management of the upper river basin of Namgang dam. The proposed application alternative can be displayed on the map, which has the advantage of clearly defining the BMP installation location.

Analysis of Bed Changes of the Nakdong River with Opening the Weir Gate (낙동강 보 개방에 따른 하상변동 분석)

  • Kim, Seong-Jun;Kim, Chang-Sung
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.4
    • /
    • pp.353-365
    • /
    • 2020
  • In this study, the characteristics of bed elevation changes of the Nakdong River when weir gates are opened were analyzed using the Hydrologic Engineering Center-River Analysis System (HEC-RAS). The study area was 292.37 km downstream of the Gudam Bridge to the Nakdong estuary of the Nakdong River. The HEC-RAS program, which is a 1D numerical analysis model, was used to simulate bed elevation changes. Simulations were conducted under two scenarios from 2017 to 2019. Scenarios 1 and 2 were devised under the conditions of a fully opened gate and during gate installation, respectively. Results confirmed that, under the conditions of Scenario 1, deposition occurred in most sections from the Hapcheon-Changnyeong weir to the Changnyeong-Haman weir (a distance of approximately 40 km). In addition, it was predicted that the flow that included sediments in the main stream of the Nakdong River was not interrupted by the weir structure and regularly produced changes in the river bed.

Estimation of CN-based Infiltration and Baseflow for Effective Watershed Management (효과적인 유역관리를 위한 CN기법 기반의 침투량 산정 및 기저유출량 분석)

  • Kim, Heewon;Sin, Yeonju;Choi, Jungheon;Kang, Hyunwoo;Ryu, Jichul;Lim, Kyoungjae
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.4
    • /
    • pp.405-412
    • /
    • 2011
  • Increased Non-permeable areas which have resulted from civilization reduce the volume of groundwater infiltration that is one of the important factors causing water shortage during a dry season. Thus, seeking the efficient method to analyze the volume of groundwater in accurate should be needed to solve water shortage problems. In this study, two different watersheds were selected and precipitation, soil group, and land use were surveyed in a particular year in order to figure out the accuracy of estimated infiltration recharge ratio compared to Web-based Hydrograph Analysis Tool (WHAT). The volume of groundwater was estimated considering Antecedent soil Moisture Condition (AMC) and Curve Number (CN) using Long Term Hydrologic Impact Assessment (L-THIA) model. The results of this study showed that in the case of Kyoung-an watershed, the volume of both infiltration and baseflow seperated from WHAT was 46.99% in 2006 and 33.68% in 2007 each and in Do-am watershed the volume of both infiltration and baseflow was 33.48% in 2004 and 23.65% in 2005 respectively. L-THIA requires only simple data (i.e., land uses, soils, and precipitation) to simulate the accurate volume of groundwater. Therefore, with convenient way of L-THIA, researchers can manage watershed more effectively than doing it with other models. L-THIA has limitations that it neglects the contributions of snowfall to precipitation. So, to estimate more accurate assessment of the long term hydrological impacts including groundwater with L-THIA, further researches about snowfall data in winter should be considered.

An Analysis of the Water Quality Improvement Measures and Evaluation of Wonju Stream (원주천 수질개선 방안 및 개선효과 평가)

  • Kum, Donghyuk;Shin, Minhwan;Yu, Nayeong;Lee, Seolo;Kim, Dongjin;Sung, Younsoo;Lee, Sang Soo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.1
    • /
    • pp.61-73
    • /
    • 2021
  • Recently, the deterioration of water quality in Wonju stream has been reported due to the increase in diverse pollution sources along with community development and urbanization. Various types of attempts with a huge budget were made for better water quality so far, but its effectiveness is still doubted. In order to establish site-oriented measures for water quality improvement, the topographic and hydrologic factors were evaluated based on site inspection and survey. As the major streams merged into the Wonju stream, the Hwa and Heungyang streams were found to have higher pollution loads and contributions compared to other streams due to the scattered livestock farms and industries, and vulnerable land use. Notably, the discharge water from the Wonju Public Sewage Treatment Plant had the highest level of pollution load, impacting on the water quality of Wonju Stream. According to the SWAT model as water quality measures, the improvement effect of water quality in this treatment plant can be reached to the reductions in BOD 11.06%, T-N 23.56%, T-P 10.60% when the proper managements applied, whereas the improvement of water quality would be 3.89%, 1.23%, and 3.32% for BOD, T-N, T-P, respectively, for the industries. The reduction of the livestock industry was generally very high as a pollution source, but it was not much higher at the end of Wonju Stream than other measures. These results recommended that the water q uality improvement measures should be designated for each upper-middle-lower section in Wonju stream.

A Modified Digital Elevation Modeling for Stormwater Management Planning in Segmentalized Micro-catchment Areas

  • Lee, Eun-seok
    • Journal of People, Plants, and Environment
    • /
    • v.24 no.1
    • /
    • pp.39-51
    • /
    • 2021
  • Background and objective: Urban topology can be characterized as impervious, which changes the hydrologic features of an area, increasing surface water flow during local heavy rain events. The pluvial flooding is also influenced by the vertical structures of the urban area. This study suggested a modified digital elevation model (DEM) to identify changes in urban hydrological conditions and segmentalized urban micro catchment areas using a geographical information system (GIS). Methods: This study suggests using a modified DEM creation process based on Rolling Ball Method concepts along with a GIS program. This method proposes adding realized urban vertical data to normal DEM data and simulating hydrological analyses based on RBM concepts. The most important aspect is the combination of the DEM with polygon data, which includes urban vertical data in three datasets: the contour polyline, the locations of buildings and roads, and the elevation point data from the DEM. DEM without vertical data (DCA) were compared with the DEM including vertical data (VCA) to analyze catchment areas in Shin-wol district, Seoul, Korea. Results: The DCA had 136 catchments, and the area of each catchment ranged from 3,406 m2 to 423,449 m2. The VCA had 2,963 catchments, with the area of each ranging from 50 m2 to 16,209 m2. The most important finding is that in the overlapped VCA; the boundary of areas directly affected by flooding and the direction of surface water flow could be identified. Flooding data from September 21, 2010 and July 27, 2011 in the Shin-wol district were applied as ground reference data. The finding is that in the overlapped VCA; the boundary of areas directly affected by flooding and the direction of surface water flow could be identified. Conclusion: The analysis of the area vulnerable to surface water flooding (SWF) was more accurately determined using the VCA than using the DCA.

Analysis of Geomorphological Characteristics of Bukhan River Basin based on Hydrologic Unit Map (수자원 단위지도를 기반으로 한 북한강 유역의 지형학적 특성 분석)

  • Park, Geun-Ae;Kwon, Hyung-Joong;Kim, Seong-Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3B
    • /
    • pp.241-251
    • /
    • 2006
  • This study analyzed the topographical characteristics by extracting property factors of stream (stream order, number of stream, stream length, mean stream length) and property factors of basin (basin area, basin length, total stream length, total number of stream, basin mean width, form factor, maximum stream order, basin density, stream frequency, relief ratio, mean elevation, mean, slope, maximum elevation) from DEM (digital elevation model) and stream network generated by 1:5,000 NGIS (national geographical information system) data for the Bukhan-river basin. In addition, topographical factors for upper, mid stream and lower stream were analyzed and the mutuality of the factors by linear and nonlinear regression curve was identified.

Change of AMC due to Climatic Change (기후변화에 따른 선행토양함수조건(AMC)의 변화)

  • Yoo, Chulsang;Park, Cheong Hoon;Kim, Joong Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3B
    • /
    • pp.233-240
    • /
    • 2006
  • One of the main factor that effects on the CN's value in SCS Curve Number method for the estimation of direct runoff is the antecedent soil moisture condition (AMC). It is also common to use the AMC-III in hydrologic practice, which provides the largest runoff as possible. In this paper, AMC defending on the rainfall characteristics is analyzed using daily rainfall data at rainy season (June~September) of the Seoul station from 1961 to 2002. The probability mass function of AMC is also investigated to analyze the variation of AMC based on climate change, scenarios from several General Circulation Model (GCM) predictions. As a results we can find that the occurrence of AMC-I is reduced, and AMC-III is increased, whereas AMC-II does not change.

Application of SAD Curves in Assessing Climate-change Impacts on Spatio-temporal Characteristics of Extreme Drought Events (극한가뭄의 시공간적 특성에 대한 기후변화의 영향을 평가하기 위한 SAD 곡선의 적용)

  • Kim, Hosung;Park, Jinhyeog;Yoon, Jaeyoung;Kim, Sangdan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6B
    • /
    • pp.561-569
    • /
    • 2010
  • In this study, the impact of climate change on extreme drought events is investigated by comparing drought severity-area-duration curves under present and future climate. The depth-area-duration analysis for characterizing an extreme precipitation event provides a basis for analysing drought events when storm depth is replaced by an appropriate measure of drought severity. In our climate-change impact experiments, the future monthly precipitation time series is based on a KMA regional climate model which has a $27km{\times}27km$ spatial resolution, and the drought severity is computed using the standardized precipitation index. As a result, agricultural drought risk is likely to increase especially in short duration, while hydrologic drought risk will greatly increase in all durations. Such results indicate that a climate change vulnerability assessment for present water resources supply system is urgent.