• Title/Summary/Keyword: Hydrogeology

Search Result 60, Processing Time 0.061 seconds

Establishment of an Optimal Rehabilitation Process for Agricultural Public Wells by Applying Standardized Diagnostic Functions (농어업용 공공관정 기능진단 표준화(안)을 이용한 최적 사후관리)

  • Lee, Byung Sun;Song, Sung-Ho;Park, Jeong-Keun;Won, Young-Cheon;Kim, Wonsuck
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.4
    • /
    • pp.1-9
    • /
    • 2016
  • Rehabilitation for low-yielding wells resulting in improvement on groundwater quantity and quality is considered to be the most economic and ecofriendly method against the increasing demand to groundwater due to frequent drought and the increase in numbers of agricultural complex for growing horticultural crops. This study suggests standard, stepwise diagnostic fuctions consisting of four steps (Basic inspection, Specific inspection, Rehabilitation, and Management) for an optimal management to the wells. Basic inspection can provide information on current groundwater quantity and quality compared with those on its initial stage. Specific-inspection based on hydrogeology can scientifically demonstrate causes of deterioration on groundwater quantity and quality. Results of specific inspection can suggest an optimal rehabilitation method to solve deteriorating problems including clogging and corrosion for the wells. After rehabiliating the wells, an assessment on groundwater quantity and quality would be conducted to identify the suitability of the applied method and improvement of the wells. A short-term, periodic management to the wells is considered as the key to save a public management budget. Suggested diagnostic functions can possibly induce sustainable supply of agricultural groundwater to the farm land and finally contribute the increase on rural household income.

Groundwater Flow and Tritium Transport Modeling at Kori Nuclear Power Plant 1 Site (고리 1발전소 부지 내 지하수 유동 및 삼중수소 이동 모델링)

  • Sohn, Wook;Sohn, Soon-Hwan;Chon, Chul-Min;Kim, Kue-Yong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.3
    • /
    • pp.149-159
    • /
    • 2011
  • Nuclear power utilities should establish a site-specific groundwater monitoring program for early detection of unplanned radioactive material's releases which can occur due to degradation of systems, structures and components of the nuclear power plants in order to keep the impact of the unplanned releases on the environment and the residents as low as reasonably achievable. For this end, groundwater flow on site should be evaluated based on characterization of the hydrogeology of a site of concern. This paper aims to provide data necessary for establishing groundwater monitoring program which is currently considered at Kori nuclear power plant 1 by characterizing groundwater flow system on the site based on the existing hydrogeological studies and related documents, and by modeling tritium transport. The results showed that the major groundwater flow direction was south-west and that most of groundwater entered a southern and eastern seas. Although the tritium plume also released into the sea, its rate was delayed by dewatering sump.

Electromagnetic Survey in Korea (한국의 전자탐사 현황)

  • Cho, Dong-Heng
    • Economic and Environmental Geology
    • /
    • v.39 no.4 s.179
    • /
    • pp.427-440
    • /
    • 2006
  • Electromagnetic(EM) survey has been in use for over a half century as a standard routine for, mineral exploration in many parts of the world. But EM survey work and serious research effort were initiated in Korea only as late as in early 1980s, largely inspired by four pioneers who did their graduate studies in the U.S.A. in 1970s. Nevertheless domestic achievements in the field of EM survey are remarkable in the last two decades: the field operations and related interpretational skills appear to have reached a global standard, even compared with the most advanced in other countries, virtually in a whole spectrum of the method which includes magneto-tellurics(MT), Controlled Source Audio-frequency Magneto-tellurics(CSAMT), geomagnetic sounding, small loop survey systems, Very Low Frequency(VLF), Ground Penetrating Radar(GPR), time domain surveys, and noise analysis. Besides mineral exploration, EM survey has been applied in Korea to hydrogeology, geotechnical engineering, non-destructive investigation of structures, unexplored ordnance(UXO) investigation, environmental monitoring, and archaeological investigation as well. Now that original contributions of several Korean geophysicists are found even in new frontiers such as high-frequency EM survey, investigation in time-domain EM field for buried metal objects and structures, and also modem data inversion scheme, it is duly hoped that they make some technical breakthrough to unravel still entangled knots of EM survey method in a forseeable future.

Water, Energy, Cooperation, and Conflict inthe Kura-Araks Basin of the South Caucasus

  • Campana, Michael E.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.3-3
    • /
    • 2011
  • After the dissolution of the Soviet Union, the Kra-Araks Basin (KAB) became an international river basin with respect to the South Caucasus states of Armenia, Azerbaijan, and Georgia. However, there are no agreements regarding water allocation, water quality, or ecosystem maintenance among the aforementioned riparians. The main water problems in the basin include not only water quantity and quality, but also the lack of joint management. The aforementioned countries share many similar circumstances: location in a politically unstable but strategic region bureaucratic and structural issues; and more importantly, ongoing ethnic and related conflicts. Despite these obstacles, the countries recognize that they depend greatly on the basin, whose waters they must share. To that end, they proposed and participated in the joint NATO-OSCE South Caucasus River Monitoring (SCRMP) project between 2002 and 2009.The SCRMP sought to investigate and characterize the surface water quality in the KAB by providing equipment and training to all three countries. Several years' worth of water quality data were collected in the KAB: major ions; heavy metals; POPs (persistent organic pollutants); and radionuclides; The North Atlantic Treaty Organization (primary funder) and the Organization for Security and Co-operation in Europesupported the SCRMP not only to build capacity but also to promote cooperation and minimize conflict over water and other resources, thus providing a measure of security for Europe and other regions. The South Caucasus is a strategically-important region, functioning as a bridge between Asia and Europe. Energy-rich Azerbaijan seeks to become a key player in trade by serving as a transportation and energy hub between the energy and mineral-rich Central Asian KUT countries (Kazakhstan, Uzbekistan, and Turkmenistan) and Western Asia, Europe, and other areas. The presentation will summarize the scientific results of the SCRMP, elucidate the regional water-energy-security nexus, discuss future work in the region, and explain why the world needs to be concerned about the KAB and the entire South Caucasus.

  • PDF

A Study on Isotopic Fractionation between Ice and Meltwater by a Melting Experiment (융해실험에 의한 얼음과 융해수의 안정동위원소분화에 관한 연구)

  • Lee, Jeonghoon;Ham, Ji-Young;Hur, Soon Do
    • Ocean and Polar Research
    • /
    • v.37 no.4
    • /
    • pp.327-332
    • /
    • 2015
  • Isotopic compositions of ice and meltwater play a very crucial role in paleoclimate studies based on ice cores and water resources research conducted in alpine hydrogeology. Better understanding of variations in the stable isotopic compositions of water is required since changes from ice to liquid water are gaining more attention due to recent climate change. In this work, a melting experiment was designed and conducted to investigate how the isotopic compositions of ice vary with time by heat sources, such as solar radiation. We conducted the melting experiment for 22 hours. The discharge rate rose to a maximum value after 258 minutes and gradually declined because we fixed the heat source. The isotopic compositions of meltwater increased linearly or to a second degree polynomial. The linear relationship between oxygen and hydrogen has a slope of 6.8, which is less than that of the Global Meteoric Water Line (8) and higher than a theoretical value (6.3). The deuterium excess decreased when ${\delta}D$ or ${\delta}^{18}O$ increases or vise versa since the slope of the relationship for ice-liquid exchange is less than 8. These findings and the apparatus of the melting experiments will make a helpful contribution to the studies of stable isotopes and the melting process in temperate and polar regions.

Analysis of Siting Criteria of Overseas Geological Repository (I): Geology (국외 심지층 처분장 부지선정기준 분석 (I) : 지질)

  • Jung, Haeryong;Kim, Hyun-Joo;Kim, Min Jung;Cheong, Jae-Yeol;Jeong, Yi-Yeong;Lee, Eun Yong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.4
    • /
    • pp.305-311
    • /
    • 2012
  • Geology, hydrogeology, and geochemistry are the main technical siting factors of a geological repository for spent nuclear fuels. This paper focused on how rock's different geological conditions, such as topography, soils, rock types, structural geology, and geological events, influence the functions of the geological repository. In the context, the site selection criteria of various countries were analyzed with respect to the geological conditions. Each country established the criteria based on its important geological backgrounds. For example, it was necessary for Sweden to take into account the effect of ice age on the land uplift and sea level change, whereas Japan defined seismic activity and volcanism as the main siting factors of the geological repository. Therefore, the results of the paper seems to be helpful in preparing the siting criteria of geological repository in Korea.

Hydrochemical Properties of the Groundwater Used for the Natural Mineral Waters in Precambrian Metamorphic Terrains, Korea (선캄브리아기 변성암지역에 분포하는 먹는 샘물 지하수의 수리화학적 특성)

  • 성익환;추창오;조병욱;이병대;김통권;이인호
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.5 no.4
    • /
    • pp.203-209
    • /
    • 1998
  • The quality of groundwater used for natural mineral water should be strictly regulated on international level by hydrogeology experts and officials because groundwater is greatly subjected to contaminations and its aquifer system may be easily destroyed by external reasons. A total of 18 natural mineral water plants exist in Precambrian metamorphic terrains of the Gyunggi massif and Yeungam massif. The g개undwater quality for the natural mineral water investigated in hydrochemical aspects shows that pH ranges from 6.85 to 8.02 with an average of 7.52. The electric conductivity (EC) and hardness average 134.1 $\mu$S/cm and 43.5, respectively, which are relatively low to the total average (151.4 $\mu$S/cm and 57.9). The contents of major cations and anions are in the order of $Ca^{2+}$$Na^{+}$>Mg$^{2+}$>K$^{+}$ and HCO$_3$$^{-}$ >SO$_4$$^{2-}$ >Cl$^{-}$ >F$^{-}$ , respectively. The dominant water types determined by Piper diagram are $Ca^{2+}$$Na^{+}$-HCO$^{-}$ $_3$and $Ca^{2+}$-HCO$^{-}$ $_3$, mainly due to the dissolution of plagioclase in the host rocks. Representative correlation coefficients between chemical species are $Ca^{2+}$-HCO$^{-}$ $_3$(0.92), $Ca^{2+}$-Cl$^{-}$ (0.63), $Na^{+}$-F$^{-}$ (0.67), HCO$^{-}$ $_3$-Cl$^{-}$ (0.66), and $Na^{+}$-HCO$^{-}$ $_3$(0.63). The determinative. coefficients between $Ca^{2+}$ and HCO$^{-}$ $_3$, and (Ca$^{2+}$$Na^{+}$+K$^{+}$ and EC art highest among the elements. According to the saturation index, most chemical species are undersaturated with respect to major minerals, except for some silica phases. In viewpoint of phase equilibrium, the chemical evolution of the groundwater may continue to proceed with increasing pH because the groundwater is undersaturated with respect to feldspars.

  • PDF

A Note on Under ground water (지하수에 대한 소고)

  • 최귀열
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.8 no.1
    • /
    • pp.1055-1063
    • /
    • 1966
  • Ground water hydrology may be defined as the science of the occnrrence, distribution, and movement of water below the surface of the earth. Geohydrology has an identical connotation, and hydrogeology differs only by its greater emphasis on geology. Ground water referred to with out further specification is commonly understood to mean water occupying all the voids with in a geologic stratum. This saturated zone is tobe distinguished from an unsaturated, or aeration zone where voids are filled \yith water and air. Water contained in saturate:! zones is important for engineering works, geologic studies, and water supply developements Conseqently, the occurrence of water in these zones will be emphasized here. Un-saturated zones are usualiy found above saturated zones and extending upward to the ground surface. Because this water includes soil moisture with in the root zone, it is a major concern of agricultlre, botmy and soil science. No rigid demarcation of waters, between the two zones is possible, for they possess an iriterdependent boundary and water can move from zone to zone in either science, including eology, hydrology, meteorology, and oceanography are concerned with earths water, but ground water hydrology may be regarded as a specialized science combining elements of geology, hydrology, and fluid mechanics. Geology governs the occurrence and distribution of ground water, hydrology determines the supply of water to the ground, and fluid mechanics explains its movement. To provide maximum development of grofnd water resources. for benefical use requires thinking in terms of an entire ground water basin. In order to inorease the natural supply of ground water, man has attempted to artifially recharge ground water basins. Coastal aquifers come in contact with the ocean at seawater of the coastline. Fresh ground water is discharged in to the ocean. the seaward flow of ground water has been decreased or even reversed, Sea water penettating in land in aquifer.

  • PDF

Development of a Groundwater Source Heat Pump in a Fractured Rock Aquifer (암반 대수층에서 개방형 지열 시스템의 개발 및 적용)

  • Shim, Byoung Ohan;Kim, Seong-Kyun;Choi, Hanna;Lee, Soo-Hyoung;Ha, Kyoochul;Kim, Yongchul
    • New & Renewable Energy
    • /
    • v.17 no.3
    • /
    • pp.32-41
    • /
    • 2021
  • A groundwater source heat pump (GWHP) was developed in this study by adapting a borehole heat exchanger with closed-loop and open-loop systems in a new building. In the pilot test building, the air-conditioning on the second floor was designed to employ a closed-loop system and that on the third floor had an open-loop system. The GWHP design is based on the feasibility of groundwater resources at the installation site. For the hydrogeological survey of the study site, pumping and injection tests were conducted, and the feasibility of GWHP installation was evaluated based on the air-conditioning load demand of the building. The site was found to be satisfactory for the design capacity of the thermal load and water quality. In addition, the effect of groundwater movement on the performance of the closed-loop system was tested under three different operational scenarios of groundwater pumping. The performance of the system was sustainable with groundwater flow but declined without appropriate groundwater flow. From long-term observations of the operation, the aquifer temperature change was less than 2℃ at the observation well and 5℃ at the injection well with respect to the initial groundwater temperature. This pilot study is expected to be of guidance for developing GWHPs at fractured rock aquifers.

Geologic Structure and Rocks as Geotechnical Risk Factors at Intermediate depth Tunneling in Korea (한국의 대심도 터널 지반 위험인자로서 암석과 지질구조)

  • Ihm, Myeong Hyeok
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.3
    • /
    • pp.551-557
    • /
    • 2022
  • Geotechnical risk factors encountered in intermediate-depth underground tunnel construction are diverse, and the types and standards of risk factors are different according to the depth and regional geological characteristics of Korea. In order to understand the effects of geological characteristics and geologic structure on safety, which show various porous characteristics of urban underground complex ground, the risk factors of intermediate-depth rock mass in Korea were analyzed based on domestic and foreign cases. As a result of the study, seven categories affecting the stability of the intermediate-depth tunneling, namely, geologic structure, rock characteristics, hydrogeology, overburden, high stress, ground characteristics and artificial structures, and about 22 risk factors were derived. We present the risk criteria and interval values for risk evaluation of faults, folds, dikes, and rocks that have the greatest influence among risk factors. Criteria and interval values for other risk factors are under study.