• Title/Summary/Keyword: Hydrogenation catalysts

Search Result 67, Processing Time 0.018 seconds

Effect of Preparation Conditions on the Hydrogenation Activity and Metal Dispersion of Pt/C and Pd/C Catalysts

  • Jhung, Sung-Hwa;Lee, Jin-Ho;Lee, Jong-Min;Lee, Ji-Hye;Hong, Do-Young;Kim, Myong-Woon;Chang, Jong-San
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.4
    • /
    • pp.563-568
    • /
    • 2005
  • The Pt/C and Pd/C catalysts were prepared from conventional chloride precursors by adsorption or precipitation-deposition methods. Their activities for hydrogenation reactions of cyclohexene and acetophenone were compared with those of commercial catalysts. The Pt/C and Pd/C catalysts obtained from the adsorption procedure reveal higher hydrogenation activity than commercial catalysts and the catalysts prepared by the precipitation-deposition method. Their improved performances are attributed to the decreased metal crystallite sizes of Pt or Pd formed on the active carbon support upon the adsorption of the precursors probably due to the same negative charges of the chloride precursor and the carbon support. Under the preparation conditions studied, the reduction of the supported catalysts using borohydrides in liquid phase is superior to a gas phase reduction by using hydrogen in the viewpoint of particle size, hydrogenation activity and convenience.

Hydrogenation of Ethyl Acetate to Ethanol over Bimetallic Cu-Zn/SiO2 Catalysts Prepared by Means of Coprecipitation

  • Zhu, Ying-Ming;Shi, Xin Wang Li
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.141-146
    • /
    • 2014
  • A series of bimetallic Cu-Zn/$SiO_2$ catalysts were prepared via thermal decomposition of the as-synthesized $CuZn(OH)_4(H_2SiO_3)_2{\cdot}nH_2O$ hydroxides precursors. This highly dispersed Cu-solid base catalyst is extremely effective for hydrogenation of ethyl acetate to ethanol. The reduction and oxidation features of the precursors prepared by coprecipitation method and catalysts were extensively investigated by TGA, XRD, TPR and $N_2$-adsorption techniques. Catalytic activity by ethyl acetate hydrogenation of reaction temperatures between 120 and $300^{\circ}C$, different catalyst calcination and reduction temperatures, different Cu/Zn loadings have been examined extensively. The relation between the performance for hydrogenation of ethyl acetate and the structure of the Cu-solid base catalysts with Zn loading were discussed. The detected conversion of ethyl acetate reached 81.6% with a 93.8% selectivity of ethanol. This investigation of the Cu-Zn/$SiO_2$ catalyst provides a recently proposed pathway for ethyl acetate hydrogenation reaction to produce ethanol over Cu-solid base catalysts.

Efficient Hydrogenation Catalysts of Ni or Pd on Nanoporous Carbon Workable in an Acidic Condition

  • Lee, Dong-Hwan;Kim, Hong-Gon;Kang, Min;Kim, Ji-Man;Lee, Ik-Mo
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.11
    • /
    • pp.2034-2040
    • /
    • 2007
  • Efficient catalytic systems, where Ni or Pd is introduced in a supporting material of nanoporous carbon, have been developed for a liquid-phase hydrogenation of carboxylic acids and ketones at room temperature. It has been found that the catalysts reliably show high activities and selectivities for the hydrogenation to alcohols even in acidic conditions, and the catalytic activities depend on the preparative method of catalysts, the hydrogen pressure, the agitation rate, and the catalytic species. The hydrogenation of carboxylic acids and ketones clearly shows that the reaction rate is affected by the electronic and the steric effects, and a plausible reaction mechanism using metal hydrides as catalytic species is proposed.

Effects of Catalyst Promotion on the Selective Hydrogenation of Biphenol Using Various Pd/C Catalysts

  • Cho, Hong-Baek;Hong, Bum-Eui;Park, Jai-Hyun;Ahn, Sung-Hyun;Park, Yeung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.12
    • /
    • pp.2434-2440
    • /
    • 2008
  • The effect of sodium (Na) promotion was studied in the biphenol (BP) hydrogenation using various Pd/C catalysts. Different amounts of sodium metal were used for promotion with Pd/C and their effects on BP hydrogenation were observed. The promotion order was changed to compare the effect of the position of the promoter in relation to the palladium (Pd) metal on the catalytic activity and yield of the final product, bicyclohexyl-4,4'-diol (BHD). Pd/C catalysts prepared from different methods were also sodium-promoted and the changes of the reaction pathway according to the type of promoted Pd/C catalyst were compared.

Effect of Catalyst Preparation on the Selective Hydrogenation of Biphenol over Pd/C Catalysts

  • Cho, Hong-Baek;Park, Jai-Hyun;Hong, Bum-Eui;Park, Yeung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.2
    • /
    • pp.328-334
    • /
    • 2008
  • The effects of catalyst preparation on the reaction route and the mechanism of biphenol (BP) hydrogenation, which consists of a long series-reaction, were studied. Pd/C catalysts were prepared by incipient wetness method and precipitation and deposition method. The reaction behaviors of the prepared catalysts and a commercial catalyst along with the final product distributions were very different. The choice of the catalyst preparation conditions during precipitation and deposition including the temperature, pH, precursor addition rate, and reducing agent also had significant effects. The reaction behaviors of the catalysts were interpreted in terms of catalyst particle size, metal distribution, and support acidities.

Hydrogenation of Polycyclic Aromatic Hydrocarbons Over Pt/Kieselguhr Catalysts in a Trickle Bed Reactor (Trickle Bed Reactor에서 Pt/Kieselguhr 촉매를 이용한 다환방향족 탄화수소 수소화 반응)

  • Seung Kyo, Oh;Seohyeon, Oh;Gi Bo, Han;Byunghun, Jeong;Jong-Ki, Jeon
    • Clean Technology
    • /
    • v.28 no.4
    • /
    • pp.331-338
    • /
    • 2022
  • The objective of this study is to prepare bead-type and pellet-type Pt (1 wt%)/Kieselguhr catalysts as hydrogenation catalysts for the polycyclic aromatic hydrocarbons (PAHs) included in pyrolysis fuel oil (PFO). The optimal reaction temperature to maximize the yield of saturated cyclic hydrocarbons during the PFO-cut hydrogenation reaction in a trickle bed reactor was determined to be 250 ℃. A hydrogen/PFO-cut flow rate ratio of 1800 was found to maximize 1-ring saturated cyclic compounds. The yield of saturated cyclic compound increased as the space velocity (LHSV) of PFO-cut decreased. The difference in hydrogenation reaction performance between the pellet catalyst and the bead catalyst was negligible. However, the catalyst impregnated by Pt after molding the Kieselguhr support (AI catalyst) showed higher hydrogenation activity than the catalyst molded after Pt impregnation on the Kieselguhr powder (BI catalyst), which was a common phenomenon in both the pellet catalysts and bead catalysts. This may be due to a higher number of active sites over the AI catalyst compared to the BI catalyst. It was confirmed that the pellet catalyst prepared by the AI method had the best reaction activity of the prepared catalysts in this study. The majority of the PFO-cut hydrogenation products were cyclic hydrocarbons ranging from C8 to C15, and C11 cyclic hydrocarbons had the highest distribution. It was confirmed that both a cracking reaction and hydrogenation occurred, which shifted the carbon number distribution towards light hydrocarbons.

In Situ-DRIFTS Study of Rh Promoted CuCo/Al2O3 for Ethanol Synthesis via CO Hydrogenation

  • Li, Fang;Ma, Hongfang;Zhang, Haitao;Ying, Weiyong;Fang, Dingye
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2726-2732
    • /
    • 2014
  • The promoting effect of rhodium on the structure and activity of the supported Cu-Co based catalysts for CO hydrogenation was investigated in detail. The samples were characterized by DRIFTS, $N_2$-adsorption, XRD, $H_2$-TPR, $H_2$-TPD and XPS. The results indicated that the introduction of rhodium to Cu-Co catalysts resulted in modification of metal dispersion, reducibility and crystal structure. DRIFTS results of CO hydrogenation at reaction condition (P=2 MPa, $T=260^{\circ}C$) indicated the addition of 1 wt % rhodium improved hydrogenation ability of Cu-Co catalysts. The ethanol selectivity and CO conversion were both improved by 1 wt % Rh promoted Cu-Co based catalysts. The alcohol distribution over un-promoted and rhodium promoted Cu-Co based catalysts obeys A-S-F rule and higher chain growth probability was got on rhodium promoted catalyst.

Selective Hydrogenation of 1,3-Butadiene over Supported Nickel Catalyst Obtained from Nickel-Zirconia Solid Solution

  • Chang, Jong-San;Ryu, Jae-Oak;Lee, Jong-Min;Park, Sang-Eon;Hong, Do-Young;Jhung, Sung-Hwa
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.10
    • /
    • pp.1512-1514
    • /
    • 2005
  • Catalytic properties of Ni-Zr$O_2$ catalysts prepared by coprecipitation have been studied for the gas-phase hydrogenation of 1,3-butadiene to butenes. The coprecipitation method led to the solid solution of Ni-Zr$O_2$, which contains highly resistant Ni species to thermal reduction with H2. Nickel species of the solid solution were highly dispersed in the ZrO2 lattice, so that the reduced catalysts were selective for hydrogenation of 1,3-butadiene to butenes (99.9%) even in the presence of 1-butene.

Catalytic Hydrogenation of Unsaturated Organic Compounds by Rutheniumhydridonitrosyl Complexes (Rutheniumhydridonitrosyl 착물을 이용한 불포화 유기화합물의 수소화 반응)

  • Park, Mi Young;Kim, Young Joong;Cho, Ook Jae;Lee, Ik Mo
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.6
    • /
    • pp.445-452
    • /
    • 1996
  • Catalytic hydrogenation of ketones and aldehydes by RuH(NO)$L_3$ ($L_3$: $PPh_3$, PhP($CH_2CH_2PPh_2$)$_2$(etp)) was investigated to examine the reaction mechanism and the competence of hydridonitrosyl complexes as catalysts for organic synthesis. RuH(NO)$L_3$ showed catalytic activity for the hydrogenation and the activities of catalysts were dependent on the steric and electronic factors. The less the steric demands of the substrates become, the more activity the catalysts show. For the electronic effect, the more the partial positive charge on the carbonyl carbon atom in ketones becomes and the more the double bond character of carbonyl group in aldehydes becomes, the more active the catalysts are. These results reflect the difference of reaction mechanisms of two substrates, ketones and aldehydes. Catalytic activities of RuH(NO)(etp) and RuH(NO)($PPh_3$)$_3$ in the presence of extra $PPh_3$ toward hydrogenation showed the existence of a reaction pathway accompanied with the change of the bonding modes of NO ligand. The roles of excess $PPh_3$ change with increase of the mole ratio of $PPh_3$ to catalysts; prevention of ligand dissociation from comlexes → bases → ligands. The activity of RuH(NO)(etp) was lower than that of RuH(NO)($PPh_3$)$_3$ toward the hydrogenation of the same substrates mainly due to the structural difference. These catalysts showed the selectivity toward olefin hydrogenation over carbonyl groups in the competitive reaction.

  • PDF

The $CO_{2}$ Hydrogenation toward the Mixture of Methanol and Dimethyl Ether: Investigation of Hybrid Catalysts

  • 준기원;K.S. Rama Rao;정미희;이규완
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.4
    • /
    • pp.466-470
    • /
    • 1998
  • Catalytic hydrogenation of carbon dioxide for the simultaneous synthesis of methanol and dimethyl ether (together called oxygenates) over a combination of methanol synthesis and methanol dehydration catalysts has been studied. Various methanol synthesis and methanol dehydration catalysts were examined for this reaction. The addition of promotors like $Ga_2O_3\; and\; Cr_2O_3$ to Cu/ZnO catalyst gave much more enhanced yield on the formation of oxygenates. From the results, the promotional effect of $Cr_2O_3$ has been explained in terms of increase in the intrinsic activity of Cu while that of $Ga_2O_3$ being increase in the dispersion of Cu. Among the methanol dehydration catalysts examined, the solid acids bearing high population of intermediate-strength acid sites were found to be very effective for the production of oxygenates. HY zeolite which contains strong acid sites produce small amount of hydrocarbons as by-products. However, CuNaY zeolite in which the presence of strong acid sites are minimum gives very high oxygenates yield without the formation of hydrocarbons.