• Title/Summary/Keyword: Hydrogenation/dehydrogenation

Search Result 28, Processing Time 0.025 seconds

Sintering Characterization of Ti Powder Prepared by HDH Process (HDH공정에 의한 티타늄 분말제조 및 소결특성)

  • Choi, Jung-Chul;Chang, Se-Hun;Cha, Young-Hoon;Oh, Ik-Hyun
    • Korean Journal of Materials Research
    • /
    • v.19 no.2
    • /
    • pp.55-60
    • /
    • 2009
  • In this study, Ti powder was fabricated from Ti scrap by a hydrogenation-dehydrogenation (HDH) method. The Ti powders were compacted by Spark plasma sintering (SPS) and the microstructure and mechanical properties of the powders were investigated. A hydrogenation reaction of Ti scrap occurred at temperatures near $450^{\circ}C$ with a sudden increase in the reaction temperature and a decrease in the pressure of the hydrogen gas as measured in a furnace during the hydrogenation process. In addition, a dehydrogenation process was carried out at $750^{\circ}C$ for 2hrs in a vacuum of $10^{-4}torr$. The Ti powder sizes obtained by hydrogenation-dehydrogenation and mechanical milling processes were in the range of $1{\sim}90{\mu}m$ and $1{\sim}100{\mu}m$, respectively. To fabricate Ti compacts, Ti powders were sintered under an applied uniaxial punch pressure of 40 MPa at in a range of $900{\sim}1200^{\circ}C$ for 5 min. The relative density of a SPSed compact was 99.6% at $1100^{\circ}C$, and the tensile strength decreased with an increase in the sintering temperature. However, the hardness increased as the sintering temperature increased.

Hydrogen Storage Properties of Mg Alloy Prepared by Incorporating Polyvinylidene Fluoride via Reactive Milling

  • Song, Myoung Youp;Kwak, Young Jun
    • Korean Journal of Metals and Materials
    • /
    • v.56 no.12
    • /
    • pp.878-884
    • /
    • 2018
  • In the present work, we selected a polymer, polyvinylidene fluoride (PVDF), as an additive to improve the hydrogenation and dehydrogenation properties of Mg. 95 wt% Mg + 5 wt% PVDF (designated Mg-5PVDF) samples were prepared via milling in hydrogen atmosphere (reactive milling), and the hydrogenation and dehydrogenation characteristics of the prepared samples were compared with those of Mg milled in hydrogen atmosphere. The dehydrogenation of magnesium hydride formed in the as-prepared Mg-5PVDF during reactive milling began at 681 K. In the fourth cycle (n=4), the initial hydrogenation rate was 0.75 wt% H/min and the quantity of hydrogen absorbed for 60 min, $H_a$ (60 min), was 3.57 wt% H at 573 K and in 12 bar $H_2$. It is believed that after reactive milling the PVDF became amorphous. The milling of Mg with the PVDF in hydrogen atmosphere is believed to have produced defects and cracks. The fabrication of defects is thought to ease nucleation. The fabrication of cracks is thought to expose fresh surfaces, resulting in an increase in the reactivity of the particles with hydrogen and a decrease in the diffusion distances of hydrogen atoms. As far as we know, this investigation is the first in which a polymer PVDF was added to Mg by reactive milling to improve the hydrogenation and dehydrogenation characteristics of Mg.

Dehydrogenation of 2-propanol as a chief reaction for the chemical heat pump (화학적 열 펌프의 주 반응으로서의 2-propanol 반응)

  • 김태경;여영구;송형근
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.1085-1090
    • /
    • 1991
  • Chemical heat pump is a system to upgrade the low level energy such as industrial waste heat and solar energy by using coupled endothermic and exothermic chemical reactions. Dehydrogenation of 2-propanol can absorb heat near 80.deg. C and is transformed into acetone and hydrogen. Hydrogenation of acetone can liberate heat near 200.deg. C. Dehydrogenation of 2-propanol is difficult around 80.deg. C because .DELTA.G has positive value, but dehydrogenation reaction in liquid phase can overcome this problem because vaporized acetone and hydrogen can be rapidly eliminated. In this work, dehydrogenation of 2-propanol was investigated in liquid phase with Raney nickel catalyst. The energy efficiency of the chemical heat pump was estimated by computer simulation.

  • PDF

Technology of High Purity Powder Sintering by Ti Scrap Recycling (티타늄 스크랩 재활용에 의한 고순도 분말 소결 기술)

  • Choi, Jung-Chul;Chang, Se-Hun;Cha, Young-Hoon;Oh, Ik-Hyun
    • Korean Journal of Materials Research
    • /
    • v.19 no.7
    • /
    • pp.397-402
    • /
    • 2009
  • In this study, Ti powder was fabricated from Ti scrap by the Hydrogenation-Dehydrogenation (HDH) method. Hydrogenation reactions of Ti scrap occurred at near 450 $^{\circ}C$ with a sudden increase in the reaction temperature and the decreasing pressure of hydrogen gas during the hydrogenation process in the furnace. The dehydrogenation process was also carried out at 750 $^{\circ}C$ for 2hrs in a vacuum of $10^{-4}$ torr. After the HDH process, a deoxidation treatment was carried out with the Ca(purity: 99.5) at 700 $^{\circ}C$ for 2hrs in the vacuum system. It was found that the oxidation content of Ti powder that was deoxidized with Ca showed noticeably lower values, compared to the content obtained by HDH process. In order to fabricate Ti compacts, Ti powder was sintered at $1100\sim1400^{\circ}C$ for 2hrs under a vacuum of $10^{-4}$ torr. The relative density of compact was 94.9% at 1300 $^{\circ}C$. After sintering, all of the Ti compacts showed brittle fracture behavior, which occurred in an elastic range with short plastic yielding up to a peak stress.

Kinetic Parameter Analysis of Hydrogen Diffusion Reaction for Hydrogen Storage Alloy of Fuel Cell System (연료전지의 수소저장용 합금에 대한 수소확산반응의 속도론적 해석)

  • Kim, Ho-Sung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.2
    • /
    • pp.45-49
    • /
    • 2006
  • Electrochemical hydrogenation/dehydrogenation properties were studied for a single particle of a Mm-based(Mm : minh metal) hydrogen storage alloy($MmNi_{3.55}Co_{0.75}Mn_{0.4}Al_{0.3}$) for fuel cell and Ni-MH batteries. A carbon fiber microelectrode was manipulated to make electrical contact with an alloy particle, and the potential-step experiment was carried out to determine the apparent chemical diffusion coefficient of hydrogen atom($D_{app}$) in the alloy. Since the alloy particle we used here was a dense, conductive sphere, the spherical diffusion model was employed for data analysis. $D_{app}$ was found to vary the order between $10^{-9}\;and\;10^{-10}[cm^2/s]$ over the course of hydrogenation and dehydrogenation process. Compared with the conventional composite film electrodes, the single particle measurements using the microelectrode gave more detailed, true information about the hydrogen storage alloy.

Hydrogenation of ZnO:Al Thin Films Using Hot Filament

  • An, Il-Sin;Kim, Ok-Kyung;Lee, Chang-Hyo;Ahn, You-Shin
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.4 no.3
    • /
    • pp.86-90
    • /
    • 2000
  • ZnO : Al films were prepared through the optimization process of aluminum content and substrate temperature in rf-magnetron sputtering. When hydrogenation was performed on these films using a hot filament method, all films showed improvement in conductivity although more conductive film showed less improvement. When the substrate temperature ($T_H$) was varied from $25^{\circ}C\;to\;300^{\circ}C$ during hydrogenation, the resistivity was reduced more at higher $T_H$ (more than 30% at $T_H=300^{\circ}C$) Thus, two methods were developed to suppress the dehydrogenation in ZnO : Al films : (1) capping with amorphous silicon thin film as a diffusion barrier, and (2) cooling during hydrogenation.

  • PDF

Catalytic Reactions of 3-Phenyl-2-propen-1-ol with Perchloratocarbonylbis (triphenylphosphine) rhodium (I)$^\dag$

  • Park, Jeong-Han;Chin, Chong-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.4
    • /
    • pp.324-328
    • /
    • 1987
  • Reaction of Rh $(ClO_4)(CO)(PPh_3)_2$ (1) with trans-$C_6H_5CH = CHCH_2OH$ (2) produces a new cationic rhodium(Ⅰ) complex, $[Rh(trans-C_6H_5CH = CHCHO)(CO)(PPh_3)_2]ClO_4$ (3) where 2 is coordinated through the oxygen atom but not through the olefinic group. At room temperature under nitrogen, complex 1 catalyzes dehydrogenation, hydrogenolysis, and isomerization of 2 to give $trans-C_6H_5CH$ = CHCHO (4), trans-$C_6H_5CH = CHCH_3$ (5) and $C_6H_5CH_2CH_2CHO$ (6), respectively, and oligomerization of 2 whereas under hydrogen, complex 1 catalyzes hydrogenation of 2 to give $C_6H_5CH_2CH_2CH_2OH$ (7) and hydrogenolysis of 2 to 5 which is further hydrogenated to $C_6H_5CH_2CH_2CH_3$ (8). The dehydrogenation and hydrogenolysis of 2 with 1 suggest an interaction between the rhodium and the oxygen atom of 2, whereas the isomerization and hydrogenation of 2 with 1 indicate an interaction between the rhodium and the olefinic system of 2.

Property Evaluation of Ti Powder and Its Sintered Compacts Prepared by Ti Scrap (티타늄 스크랩을 이용한 분말제조 및 소결 성형체의 특성평가)

  • Lee, Seung-Min;Choi, Jung-Chul;Park, Hyun-Kuk;Woo, Kee-Do;Oh, Ik-Hyun
    • Korean Journal of Materials Research
    • /
    • v.20 no.3
    • /
    • pp.125-131
    • /
    • 2010
  • In this study, Ti powders were fabricated from Ti scrap by the Hydrogenation-Dehydrogenation (HDH) method. The Ti powders were prepared from the spark plasma sintering (SPS) and their microstructure was investigated. Hydrogenation reactions of Ti scrap occurred at near $450^{\circ}C$ with a sudden increase in the reaction temperature and the decreasing pressure of hydrogen gas during the hydrogenation process in the furnace. The dehydrogenation process was also carried out at $750^{\circ}C$ for 2 hrs in a vacuum of $10^{-4}$ torr. After the HDH process, deoxidation treatment was carried out with the Ca (purity: 99.5%) at $700^{\circ}C$ for 2 hrs in the vacuum system. It was found that the oxidation content of Ti powder that was deoxidized with Ca showed noticeably lower values, compared to the content obtained by the HDH process. In order to fabricate the Ti compacts, Ti powder was sintered under an applied uniaxial punch pressure of 40 MPa in the range of $900-1200^{\circ}C$ for 5 min under a vacuum of $10^{-4}$ torr. The relative density of the compact was 99.5% at $1100^{\circ}C$ and the tensile strength decreased with increasing sintering temperature. After sintering, all of the Ti compacts showed brittle fracture behavior, which occurred in an elastic range with short plastic yielding up to a peak stress. Ti improved the corrosion resistance of the Ti compacts, and the Pd powders were mixed with the HDH Ti powders.

A Study on the Hydrogen treatment of It and Ti-pd Alloy (티타늄 및 티나늄-팔라듐 합금의 수소처리에 관한 연구)

  • Cha, Sung-Soo
    • Journal of Technologic Dentistry
    • /
    • v.15 no.1
    • /
    • pp.5-25
    • /
    • 1993
  • Effects of hydrogenation on microstructure and mechanical properties of pure Ti and Ti-0.15Pd alloy have been studied by means of optical microscopy, differential scanning calorimeter(DSC), Xray diffraction and micro vicker's hardness test. Grain size of pure Ti and Ti-0.15Pd alloy decresed largely by hydrogenation finer than that of pure Ti and the grain size refinement was evedent in Ti-0.15Pd alloy than that in pure Ti. Ti-.015Pd alloy carried out solution treatment at 950$^{\circ}C$, the transformation of $\alpha$' martensite was occured. The amount of Hydrogen absorption in Ti-.015Pd alloy was higher than that in pure Ti. Decomposition of hydride in pure titanium and Ti-0.15Pd alloy increased largely by hydrogenation, and micro vicker's hardness of Ti-.015Pd alloy was largely than that of pure Ti by 30% after hydrogenation. The micro vicker's hardness of Ti-0.15Pd alloy after solution treatment and dehydrogenation were higher at $\beta$ phase ranger(950$^{\circ}C$) than that phase range(750$^{\circ}C$).

  • PDF

Evaluation of Hydrogenation Properties on Ti-Cr-Nb Alloys Manufactured by Arc Melting (아크용해법에 의한 Ti-Cr-Nb합금의 제조와 수소와 특성 평가)

  • Lee, Young-Geun;Hong, Tae-Whan
    • Journal of Hydrogen and New Energy
    • /
    • v.19 no.6
    • /
    • pp.482-489
    • /
    • 2008
  • Ti-Cr alloys consist of BCC solid solution, C36, C14 and C15 Laves phase at high temperature. Among others, the BCC solid solution phase was reported to have a high hydrogen storage capacity. However, activation, wide range of hysteresis at hydrogenation/dehydrogenation, and degradation of hydrogen capacity due to hydriding/dehydriding cycles must be improved for its application. In this study, to improve such problems, we added a Nb. For attaining target materials, Ti-10Cr-xNb(x=1, 3, 5wt.%) specimens were prepared by arc melting. The arc melting process was carried out under argon atmosphere. As-received specimens were characterized using XRD(X-ray diffraction), SEM(Scanning Electron Microscopy) with EDX(Energy Dispersive X-ray) and TG/DSC(Thermo Gravimetric Analysis/Differential Scanning Calorimetry). In order to examine hydrogenation behavior, the PCI(pressure-Composition-Isotherm) was performed at 293, 323, 373 and 423K.