• Title/Summary/Keyword: Hydrogenated Graphene

Search Result 4, Processing Time 0.028 seconds

Gas sensor based on hydrogenated multilayer graphene

  • Park, Seong-Jin;Park, Min-Ji;Yu, Gyeong-Hwa
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.273.1-273.1
    • /
    • 2016
  • Graphene exhibits a number of unique properties that make it an intriguing candidate for use in sensor. Here, we report graphene-based gas sensor. Graphene was grown using CVD. Then, the sensor was made using standard lithography techniques. The sensor conductance increased upon exposure to NH3, whereas it decreased upon NO2, suggesting that NH3 and NO2 might be discriminated using the graphene-based sensor. To improve the sensitivity, graphene was treated with hydrogen plasma. After hydrogen treatment, the electrical properties of graphene changed from ambipolar to p-type semiconductors. In addition, the sensor performance was improved probably due to an opening of bandgap.

  • PDF

Nanotribological Properties of Chemically Modified Graphene

  • Kwon, Sangku;Ko, Jae-Hyeon;Byun, Ik-Su;Choi, Jin Sik;Park, Bae Ho;Kim, Yong-Hyun;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.159-159
    • /
    • 2013
  • Atomically thin graphene is the ideal model system for studying nanoscale friction due to its intrinsic two-dimensional anisotropy. Furthermore, modulating its tribological properties could be an important milestone for graphene-based micro and nano-mechanical devices. Here, we report that the tribological properties can be easily altered via simple chemical modifications of the graphene surface. Friction force microscopy measurements show that hydrogenated, fluorinated, and oxidized graphenes exhibit, 2-, 6-, and 7-fold enhanced nanoscale friction on their surfaces, respectively, compared to pristine graphene. The measured nanoscale friction should be associated with the adhesive and elastic properties of the chemically modified graphenes. Density functional theory calculations suggest that, while the adhesive properties of chemically modified graphenes are marginally reduced down to ~30%, the out-of-plane elastic properties are drastically increased up to 800%. Based on these findings, we propose that nanoscale friction on graphene surfaces is characteristically different from that on conventional solid surfaces; stiffer graphene exhibits higher friction, whereas a stiffer three-dimensional solid generally exhibits lower friction. The unusual friction mechanics of graphene is attributed to the intrinsic mechanical anisotropy of graphene, which is inherently stiff in plane, but remarkably flexible out of plane. The out-of-plane flexibility can be modulated up to an order of magnitude by chemical treatmentof the graphene surface. The correlation between the measured nanoscale friction and the calculated out-of-plane flexibility suggests that the frictional energy in graphene is mainly dissipated through the out-of-plane vibrations, or the flexural phonons of graphene.

  • PDF

Peierls Instability and Spin Ordering in Graphene

  • Kim, Hyeon-Jung;Jo, Jun-Hyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.204-204
    • /
    • 2012
  • Peierls instability and spin ordering of zigzag graphene nanoribbons (GNR) created on a fully hydrogenated graphene (graphane) are investigated as a function of their width using first-principles density-functional calculations within the generalized-gradient approximation. For the width containing a single zigzag C chain (N=1), we find the presence of a Peierls instability with a bond alternated structure. However, for width greater than N=1, the Peierls distortion is weakened or disappears because of the incommensurate feature of Fermi surface nesting due to the interaction of C chains. Instead, there exists the antiferromagnetic (AFM) spin ordering in which the edge states are ferromagnetically ordered but the two ferromagnetic (FM) edges are antiferromagnetically coupled with each other, showing that electron-lattice coupling and spin ordering in GNR are delicately competing at an extremely thin width of N=2. It is found that, as the width of GNR increases, the energy gain arising from spin ordering is enhanced, but the energy difference between the AFM and FM (where two edge states are ferromagnetically coupled with each other) orderings decreases.

  • PDF