• Title/Summary/Keyword: Hydrogen-bonding

Search Result 674, Processing Time 0.023 seconds

THE ANALYSIS OF THE FT-NIR SPECTRA OF WATER ON THE BASIS OF TWO-STATE MODEL

  • Boguslawa, Czarnik-Matusewicz
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1181-1181
    • /
    • 2001
  • Robinson with ${coworkers}^{1}$ have introduced two-state outer-neighbor bonding model to explain the anomalies of water. The studies on the properties of water as a function of temperature and pressure revealed that, unlike other ideas, all $H_2O$ molecules in liquid are tetrabonded. On the average they are forming two different bonding types. One type is the regular tetrahedral water-water bonding similar to that found in the ordinary ice Ih, whereas the other is a more dense nonregular tetrahedral bonding similar to that appearing in the ice II. The transformation between these two bonding forms is evidenced by FT-NIR experiment. The FT-NIR measurements were done for liquid water in the temperature range from $20^{\circ}C$ up to $80^{\circ}C$ in a wide extent of frequencies: 12 000 - 4000 $cm^{-1}$ /. Temperature dependent variations in the volume fraction of these two structures are directly related to the spectral changes. The absorbance variations are explored by means of the two-dimensional correlation spectroscopy (2DCOS), principal component analysis (PCA), curve fitting and second derivatives. The presence of the isosbestic points in a range of the combination and overtone transitions indicates that the experimental spectra are a superposition of two temperature independent components. One component of diminishing intensity with temperature increase, is assigned to a stronger hydrogen bonds occurred in the Ih type, whereas the second component showing an opposite behavior, one can attribute to a weaker H-bonds characteristic for the II type. The understanding of the hydrogen bonding network in the liquid water is very important in interpretation of the interaction between water and protein chain. The two-state model of water surrounding the protein surface could advance an understanding of the hydration process.

  • PDF

Cryoscopy of Amine-Polytungstates (다중텅그스텐산 아민염의 분자량 측정)

  • Pyun, Chong-Hong;Sohn, Youn-Soo
    • Journal of the Korean Chemical Society
    • /
    • v.18 no.2
    • /
    • pp.126-131
    • /
    • 1974
  • Trioctylamine-and tricaprylylmethylammonium chloride-tungstate salts have been prepared by solvent extraction from the sodium tungstate solution of various acidities(pH = 2, 4, 6). The molecular weights of the amine-tungstate salts thus obtained could be cryoscopically measured in benzene by means of a home-built Wheatstone bridge utilizing thermistor with sensitivity of 1/$4000^{\circ}C$. The cryoscopic data along with the results of chemical analysis and infrared spectra of the salts indicate that the amine-tungstates prepared at pH = 2 and 4 are all metatungstate whereas the salt obtained at pH = 6 is an unknown form quite different from the expected paratungstate.R = 0.14. By hydrogen bonding a guanidyl nitrogen of a sulfaguanidine molecule is linked to the sulfonyl oxygens of the other molecules indirectly through two different water molecules. The role of water molecule is both a .nor and an acceptor in hydrogen-bonding formation and these hydrogen bonds are tetrahedrally o?ented. The hydrogen-bonding networks form infinite molecular layers parallel to (001) plane.

  • PDF

Inhibitor Design for Human Heat Shock Protein 70 ATPase Domain by Pharmacophore-based in silico Screening

  • Lee, Jee-Young;Jung, Ki-Woong;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.9
    • /
    • pp.1717-1722
    • /
    • 2008
  • The 70 kDa heat-shock protein (Hsp70) involved in various cellular functions, such as protein folding, translocation and degradation, regulates apoptosis in cancer cells. Recently, it has been reported that the green tea flavonoid (−)-epigallocatechin 3-gallate (EGCG) induces apoptosis in numerous cancer cell lines and could inhibit the anti-apoptotic effect of human Hsp70 ATPase domain (hATPase). In the present study, docking model between EGCG and hATPase was determined using automated docking study. Epi-gallo moiety in EGCG participated in hydrogen bonds with side chain of K71 and T204, and has metal chelating interaction with hATPase. Hydroxyl group of catechin moiety also participated in metal chelating hydrogen bond. Gallate moiety had two hydrogen bondings with side chains of E268 and K271, and hydrophobic interaction with Y15. Based on this docking model, we determined two pharmacophore maps consisted of six or seven features, including three or four hydrogen bonding acceptors, two hydrogen bonding donors, and one lipophilic. We searched a flavonoid database including 23 naturally occurring flavonoids and 10 polyphenolic flavonoids with two maps, and myricetin and GC were hit by map I. Three hydroxyl groups of B-ring in myricetin and gallo moiety of GC formed important hydrogen bonds with hATPase. 7-OH of A-ring in myricetin and OH group of catechin moiety in GC are hydrogen bond donors similar to gallate moiety in EGCG. From these results, it can be proposed that myricetin and GC can be potent inhibitors of hATPase. This study will be helpful to understand the mechanism of inhibition of hATPase by EGCG and give insights to develop potent inhibitors of hATPase.

A study on pre-bonding mechanism of Si wafer at HF pre-treatment (HF 전처리시 실리콘 기판의 초기접합 메카니즘에 관한 연구)

  • Kang, Kyung-Doo;Park, Chin-Sung;Lee, Chae-Bong;Ju, Byung-Kwon;Chung, Gwiy-Sang
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3313-3315
    • /
    • 1999
  • Si direct bonding(SDB) technology is very attractive for both Si-on-insulator(SOI) electric devices and MEMS applications because of its stress free structure and stability. This paper presents on pre-bonding according to HF pre-treatment conditions in Si wafer direct bonding. The characteristics of bonded sample were measured under different bonding conditions of HF concentration, and applied pressure. The bonding strength was evaluated by tensile strength method. The bonded interface and the void were analyzed by using SEM and IR camera respectively. A bond characteristic on the interface was analyzed by using IT- IR. Si-F bonds on Si surface after HF pre-treatment are replaced by Si-OH during a DI water rinse. Consequently, hydrophobic wafer was bonded by hydrogen bonding of Si $OH{\cdots}(HOH{\cdots}HOH{\cdots}HOH){\cdots}OH-Si$. The bond strength depends on the HF pre-treatment condition before pre- bonding (Min:$2.4kgf/crn^2{\sim}Max:14.9kgf/crn^2$)

  • PDF

Theoretical Investigation of the Hydrogen-bonded Halide-acetylene Anion Complexes

  • Byeong-Seo Cheong
    • Journal of the Korean Chemical Society
    • /
    • v.68 no.2
    • /
    • pp.65-73
    • /
    • 2024
  • The halide-acetylene anions, X--HCCH (X = F, Cl, and Br) have been studied by using several different ab initio and DFT methods to determine structures, hydrogen-bond energies, vibrational frequencies of the anion complexes. Although the halide-acetylene complexes all have linear equilibrium structures, it is found that the fluoride complex is characterized with distinctively different structure and interactions compared to those of the chloride and bromide complexes. The performance of various density functionals on describing ionic hydrogen-bonded complexes is assessed by examining statistical deviations with respect to high level ab initio CCSD(T) results as reference. The density functionals employed in the present work show considerably varying degrees of performance depending on the properties computed. The performances of each density functional on geometrical parameters related with the hydrogen bond, hydrogen-bond energies, and scaled harmonic frequencies of the anion complexes are examined and discussed based on the statistical deviations.

Hydrogen Bonding between Thioacetamide and a Series of Heterocyclic Compounds of Pyridine (Thioacetamide 와 피리딘계 헤테로고리 화합물 사이의 수소 결합에 대한 연구)

  • Park, Jae Heon;Lee, Mi Gyeong;O, In Cheol;Yun, Chang Ju;Choe, Yeong Sang
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.5
    • /
    • pp.345-350
    • /
    • 1994
  • The $v_{a^+}$ Amide II combination band of thioacetamide has been used to evaluate thermodynamic parameters of the hydrogen bonding of thioacetamide(TA) with pyridine(Py), quinoline(Qu), and acridine(Ac) in $CHCl_3$ and $CCl_4$ over the temperature range from 5$^{\circ}C$ to 55$^{\circ}C$. This combination band was resolved into two Lorentzian-Gaussian product bands which have been identified withmonomeric TA and hydrogen bonded TA. The thermodynamic parameters for the hydrogen bonded TA were determined by computer analysis of concentration and temperature dependent spectra. The standard enthalpies for the 1 : 1 hydrogen bonded complex of TA to pyridine, quinoline, and acridine in $CHCl_3$ have been found to be -7.6 kJ/mol, -6.5 kJ/mol, and -5.4 kJ/mol, respectively. And the standard enthalpies for the 1: 1 hydrogen bonded complex of TA to pyridine and quinoline in $CCl_4$ have been found to be -13.3kJ/mol, and -12.0kJ/mol, respectively.

  • PDF

The Study on Characteristics of a-C:H Films Deposited by ECR Plasma (전자회전공명 플라즈마를 이용한 a-C:H 박막의 특성 연구)

  • 김인수;장익훈;손영호
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2001.05a
    • /
    • pp.224-231
    • /
    • 2001
  • Hydrogenated amorphous carbon films were deposited by ERC-PECVD with deposition conditions, such as ECR power, gas composition of methane and hydrogen, deposition time, and substrate bias voltage. The characteristics of the film were analyzed using the AES, ERDA, FTIR. Raman spectroscopy and micro hardness tester. From the results of AES and ERDA, the elements in the deposited film were confirmed as carbon and hydrogen atoms. FTIR spectroscopy analysis shows that the atomic bonding structure of a-C:H film consisted of sp³and sp²bonding, most of which is composed of sp³bonding. The structure of the a-C:H films changed from CH₃bonding to CH₂or CH bonding as deposition time increased. We also found that the amount of dehydrogenation in a-C:H films was increased as the bias voltage increased. Raman scattering analysis shows that integrated intensity ratio (I/sub D//I/sub G/) of the D and G peak was increased as the substrate bias voltage increased, and films hardness was increased.

  • PDF

Studies on Adhesion Properties of Grafted EPDM Containing Carboxylic Acid Group (카르복시산을 포함하는 Grafted EPDM의 접착특성에 관한 연구)

  • Kim, Dongho;Yoon, Yoomi;Chung, Ildoo;Park, Chanyoung;Bae, Jongwoo;Oh, Sangtaek;Kim, Guni
    • Journal of Adhesion and Interface
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • The effect of the grafting ratio on the mechanical property and adhesion property of the grafted EPDM modified with methacrylic acid (MA) was investigated. The storage modulus of MA-grafted EPDM was maintained higher than that of cross-linked EPDM vulcanizate by sulfur, but it was observed that the storage modulus was decreased at elevated temperature because of the weakened secondary bonding. When the functional group for hydrogen bonding was introduced in EPDM, it had excellent mechanical properties by the aggregate between grafted EPDM molecules and crystallinity of MA. The bonding strength between EPDM and other rubbers was very low because EPDM has nonpolar property and low molecular interaction to others. The bonding strength was increased as increasing grafting ratio and it was excellent enough to break the rubber during the peel test when the grafting ratio was more than 10%.

Specimen Geometry Effects on Oxidation Behavior of Nuclear Graphite

  • Cho, Kwang-Youn;Kim, Kyung-Ja;Lim, Yun-Soo;Chung, Yun-Joong;Chi, Se-Hwan
    • Carbon letters
    • /
    • v.7 no.3
    • /
    • pp.196-200
    • /
    • 2006
  • Graphite has hexagonal closed packing structure with two bonding characteristics of van der Waals bonding between the carbon layers at c axis, and covalent bonding in the carbon layer at a and b axis. Graphite has high tolerant to the extreme conditions of high temperature and neutron irradiations rather than any other materials of metals and ceramics. However, carbon elements easily react with oxygen at as low as 400C. Considering the increasing production of today of hydrogen and electricity with a nuclear reactor, study of oxidation characteristics of graphite is very important, and essential for the life evaluation and design of the nuclear reactor. Since the oxidation behaviors of graphite are dependent on the shapes of testing specimen, critical care is required for evaluation of nuclear reactor graphite materials. In this work, oxidation rate and amounts of the isotropic graphite (IG-110, Toyo Carbon), currently being used for the Koran nuclear reactor, are investigated at various temperature. Oxidation process or principle of graphite was figured out by measuring the oxidation rate, and relation between oxidation rate and sample shape are understood. In the oxidation process, shape effect of volume, surface area, and surface to volume ratio are investigated at $600^{\circ}C$, based on the sample of ASTM C 1179-91.

  • PDF

Understanding Behaviors of Electrolyzed Water in Terms of Its Molecular Orbitals for Controlling Electrostatic Phenomenon in EUV Cleaning (EUV 세정에서 정전기 제어를 위한 전해이온수 거동의 분자궤도 이해)

  • Kim, Hyung-won;Jung, Youn-won;Choi, In-sik;Choi, Byung-sun;Kim, Jae-young;Ryoo, Kun-kul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.6-13
    • /
    • 2022
  • The electrostatic phenomenon seriously issued in extreme ultraviolet semiconductor cleaning was studied in junction with molecular dynamic aspect. It was understood that two lone pairs of electrons in water molecule were subtly different each other in molecular orbital symmetry, existed as two states of large energy difference, and became basis for water clustering through hydron bonds. It was deduced that when hydrogen bond formed by lone pair of higher energy state was broken, two types of [H2O]+ and [H2O]- ions would be instantaneously generated, or that lone pair of higher energy state experiencing reactions such as friction with Teflon surface could cause electrostatic generation. It was specifically observed that, in case of electrolyzed cathode water, negative electrostatic charges by electrons were overlapped with negative oxidation reduction potentials without mutual reaction. Therefore, it seemed that negative electrostatic development could be minimized in cathode water by mutual repulsion of electrons and [OH]- ions, which would be providing excellences on extreme ultraviolet cleaning and electrostatic control as well.