• Title/Summary/Keyword: Hydrogen storage and production

Search Result 118, Processing Time 0.025 seconds

Technical Review on Liquid/Solid (Slush) Hydrogen Production Unit for Long-Term and Bulk storage (장주기/대용량 저장을 위한 액체/고체(Slush) 수소 생산 장치의 해외기술 동향분석)

  • LEE, CHANGHYEONG;RYU, JUYEOL;SOHN, GEUN;PARK, SUNGHO
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.6
    • /
    • pp.565-572
    • /
    • 2021
  • Hydrogen is currently produced from natural gas reforming or industrial process of by-product over than 90%. Additionally, there are green hydrogens based on renewable energy generation, but the import of green hydrogen from other countries is being considered due to the output variability depending on the weather and climate. Due to low density of hydrogen, it is difficult to storage and import hydrogen of large capacity. For improving low density issue of hydrogen, the gaseous hydrogen is liquefied and stored in cryogenic tank. Density of hydrogen increase from 0.081 kg/m3 to 71 kg/m3 when gaseous hydrogen transfer to liquid hydrogen. Density of liquid hydrogen is higher about 800 times than gaseous. However, since density and boiling point of liquid hydrogen is too lower than liquefied natural gas approximately 1/6 and 90 K, to store liquid hydrogen for long-term is very difficult too. To overcome this weakness, this paper introduces storage method of hydrogen based on liquid/solid (slush) and facilities for producing slush hydrogen to improve low density issue of hydrogen. Slush hydrogen is higher density and heat capacity than liquid hydrogen, can be expected to improve these issues.

Analysis of the hydrogen energy policy and R&D program of foreign countries (해외 수소에너지 정책 및 연구개발 프로그램 분석)

  • Kang, Seok-Hun;Kim, Jong-Wook;Hong, Jong-Chul
    • Journal of Hydrogen and New Energy
    • /
    • v.16 no.2
    • /
    • pp.199-207
    • /
    • 2005
  • Hydrogen is getting more attention owing to the seriousness of air pollution and dependance on oil import, UNCCC(United Nations Convention on Climate Change) for reducing the emission of $CO_2$. This fact is not confined in a certain country but global recognition and several countries initiated R&D competition for commercializing the hydrogen fuel cell vehicle. Within 20${\sim}$30 years cost effective hydrogen production can be possible using fossil fuels because so much research is carried out up to now. But it is so far to produce the most of the hydrogen using renewable resources considering the present status of R&D and cost effectiveness. Several automobile companies planed for mass production of hydrogen vehicle by 2010 but changed or canceled the plan owing to the difficulty of R&D and the low status of infrastructure penetration. This paper surveyed the hydrogen energy policy, R&D program and commercialization strategy of advanced country, international agency, automobile and energy company to analyze the global status of R&D and policy. And the survey of R&D program is focused on the part of hydrogen production, storage, delivery and fuel cell.

Dynamic thermal Design of a 1-ton Class Bio-Hydrogen Production System Simulator Using Industrial Waste Heat and by-Products (산업배열 및 부산물을 활용한 1톤급 바이오수소 생산 시뮬레이터 동적 열설계)

  • Kim, Hyejun;Kim, Seokyeon;Ahn, Joon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.5
    • /
    • pp.259-268
    • /
    • 2017
  • This paper proposes a hydrogen-based social economy derived from fuel cells capable of replacing fossil fuels and resolving global warming, It thus provides an entry for developing economically feasible social configurations to make use of bio-hydrogen production systems. Bio-hydrogen production works from the principle that microorganisms decompose water in the process of converting CO to $CO_2$, thereby producing hydrogen. This study parts from an analysis of an existing 157-ton class NA1 bio-hydrogen reactor that identifies the state of feedstock and reactor conditions. Based on this analysis, we designed a 1-ton class bio-hydrogen reactor process simulator. We carried out thermal analyses of biological heat reactions, sensible heat, and heat radiation in order to calculate the thermal load of each system element. The reactor temperature changes were determined by modeling the feed mixing tank capacity, heat exchange, and heat storage tank. An analysis was carried out to confirm the condition of the feed mixing tank, heat exchanger, heat storage tank capacity as well as the operating conditions of the system so as to maintain the target reactor temperature.

Techno-economic Analysis(TEA) on Hybrid Process for Hydrogen Production Combined with Biomass Gasification Using Oxygen Released from the Water Electrolysis Based on Renewable Energy (재생에너지기반 수전해 생산 수소와 바이오매스 가스화 하이브리드 공정의 기술 경제성 분석)

  • Park, Sungho;Ryu, JuYeol;Sohn, Geun
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.5
    • /
    • pp.65-73
    • /
    • 2020
  • To reduce the hydrogen production cost through the utilizing the oxygen and improving the capacity factor of water electrolysis used to energy storage of renewable energy, the hybrid hydrogen production process which has dual operating concept of using the water electrolysis as energy storage and oxygen production process for biomass gasification was proposed. Moreover, Techno-economic analysis on this system was quantitatively performed.

Hydrogen Production by Auto-thermal Reforming of Ethanol over $M/Al_2O_3$ (M = Mn, Fe, Co, Ni, Cu) Catalysts ($M/Al_2O_3$ (M = Mn, Fe, Co, Ni, Cu) 촉매 상에서 에탄올 자열개질반응에 의한 수소 제조)

  • Youn, Min-Hye;Seo, Jeong-Gil;Cho, Kyung-Min;Park, Sun-Young;Kim, Pil;Song, In-Kyu
    • Clean Technology
    • /
    • v.13 no.4
    • /
    • pp.287-292
    • /
    • 2007
  • [ $M/Al_2O_3$ ] (M = Mn, Fe, Co, Ni, Cu) catalysts supported on commercial alumina ($Al_2O_3$) were prepared by an impregnation method, and were applied to the hydrogen production by auto-thermal reforming of ethanol. It was revealed that each catalyst retained its own metallic phase and product distribution strongly depended on the identity of active metal. Among the catalysts prepared, $Ni/Al_2O_3$ and $Co/Al_2O_3$ showed the best catalytic performance in the auto-thermal reforming of ethanol. However, the reaction mechanisms over these two catalysts were different. Ni/Al_2O_3 catalyst showed 100% ethanol conversion at $500^{\circ}C$, but it exhibited a rapid decrease in hydrogen selectivity. Although $Co/Al_2O_3$ catalyst showed an excellent performance in hydrogen selectivity, on the other hand, no significant improvement in hydrogen yield was observed due to the low ethanol conversion over the catalyst.

  • PDF

An Economic Analysis for Establishing a Hydrogen Supply Plan in the Metropolitan Area (수도권 수소 공급 계획 수립을 위한 사전 경제성 분석)

  • PARK, HYEMIN;KIM, SUHYUN;KIM, BYUNGIN;LEE, SEUNGHUN;LEE, HYEJIN;YOO, YOUNGDON
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.3
    • /
    • pp.183-201
    • /
    • 2022
  • In this study, economic feasibility analysis was performed when various hydrogen production and transport technologies were applied to derive hydrogen supply plans by period. The cost of hydrogen may vary depending on several reasons; configuration of the entire cycle supply path from production, storage/transportation, and utilization to the cost that can be supplied to consumers. In this analysis, the hydrogen supply price according to the hydrogen supply route configuration for each period was analyzed for the transportation hydrogen demand in metropolitan area, where the demand for hydrogen is expected to be the highest due to the expansion of hydrogen supply.

Safety risk management of ammonia to scale-up hydrogen production for transport and storage (수송/저장용 수소 생산 확대를 위한 암모니아의 안전 위험 관리 표준 동향)

  • HyungKuk Ju;Hyeokjoo Lee;Chang Hyun Lee;Sungyool Bong
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.6
    • /
    • pp.371-379
    • /
    • 2023
  • Ammonia, which is closely related to our lives, has a significant impact on our lives as a representative substance for crop cultivation. Recently, it has gained attention as an efficient and productive hydrogen/storing substance that can replace fossil fuels. Efforts are being made to utilize it as a renewable energy source through thermochemical and electrochemical reactions. However, the use of ammonia, which encompasses the era, carries inherent toxicity, so a comprehensive understanding of ammonia safety is necessary. To ensure safety in the transportation and storage of ammonia and chemical substances domestically and internationally, national and organizational standards are being developed and provided through documents and simple symbols to help people understand. This review explores the chemical characteristics of ammonia, its impact on human health, and the global trends in safety standards related to ammonia. Through this examination, the paper aims to contribute to the discourse on the safety and risk management of ammonia transport and storage, crucial for achieving carbon neutrality and expanding the hydrogen economy.

A Simulation Study on the Hydrogen Liquefaction through Compact GM Refrigerator (소형 GM 냉동기를 이용한 수소 액화에 관한 시뮬레이션 연구)

  • JUNG, HANEUL;HAN, DANBEE;YANG, WONKYUN;BAEK, YOUNGSOON
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.5
    • /
    • pp.534-540
    • /
    • 2022
  • Liquid hydrogen has the best storage capacity per unit mass and is economical among storage methods for using hydrogen as fuel. As the demand for hydrogen increases, the need to develop a storage and supply system of liquid hydrogen is emphasizing. In order to liquefy hydrogen, it is necessary to pre-cool it to a maximum inversion temperature of -253℃. The Gifford-McMahon (GM) refrigerator is the most reliable and commercialized refrigerator among small-capacity cryogenic refrigerators, which can extract high-efficiency hydrogen through liquefied hydrogen production and boil of gas re-liquefaction. Therefore, in this study, the optimal conditions for liquefying gas hydrogen were sought using the GM cryocooler. The process was simulated by PRO/II under various cooling capacities of the GM refrigerator. In addition, the flow rate of hydrogen was calculated by comparing with specific refrigerator capacity depending on the pressure and flow rate of a refrigerant medium, helium. Simulations were performed to investigate the optimal values of the liquefaction flow rate and compression pressure, which aim for the peak refrigeration effect. Based on this, a liquefaction system can be selected in consideration of the cycle configuration and the performance of the refrigerator.

Techno-Economic Analysis of Green Hydrogen Production System Based on Renewable Energy Sources (재생에너지 기반 그린 수소 생산 시스템의 기술 경제성 분석)

  • PARK, JOUNGHO;KIM, CHANG-HEE;CHO, HYUN-SEOK;KIM, SANG-KYUNG;CHO, WON-CHUL
    • Journal of Hydrogen and New Energy
    • /
    • v.31 no.4
    • /
    • pp.337-344
    • /
    • 2020
  • Worldwide, there is a significant surge in the efforts for addressing the issue of global warming; the use of renewable energy is one of the solutions proposed to mitigate global warming. However, severe volatility is a critical disadvantage, and thus, power-to-gas technology is considered one of best solutions for energy storage. Hydrogen is a popular candidate from the perspective of both environment and economics. Accordingly, a hydrogen production system based on renewable energy sources is developed, and the economics of the system are assessed. The result of the base case shows that the unit cost of hydrogen production would be 6,415 won/kg H2, with a hydrogen production plant based on a 100 MW akaline electrolyzer and 25% operation rate, considering renewable energy sources with no electricity cost payment. Sensitivity study results show that the range of hydrogen unit cost efficiency can be 2,293 to 6,984 Won/kg H2, depending on the efficiency and unit cost of the electrolyzer. In case of electrolyzer operation rate and electricity unit cost, sensitivity study results show that hydrogen unit cost is in the range 934-26,180 won/kg H2.