• Title/Summary/Keyword: Hydrogen safety

Search Result 695, Processing Time 0.03 seconds

Characteristic study and isolation of Bacillus subtilis SRCM 101269 for application of cow manure (우분 적용을 위한 Bacillus subtilis SRCM 101269의 분리 및 특성 연구)

  • Jeon, SaeBom;Oh, HyeonHwa;Uhm, Tai-Boong;Cho, Jae-Young;Yang, Hee-Jong;Jeong, Do-Youn
    • Korean Journal of Microbiology
    • /
    • v.52 no.1
    • /
    • pp.74-83
    • /
    • 2016
  • Bacillus subtilis SRCM 101269 having safety and amo gene isolated from Korean traditional fermented food and their investigated characterization to apply the cow manure such as cellulase and xylanase activities, 16S rRNA sequencing, and ability of removal of livestock manure odor. Cow manure application results for the removal of livestock manure odor, the ammonia gas was reduced more than two-folder compared to the control group after 6 days, and reduced to less than 10 ppm after 9 days. In the case of cow manure added fowl droppings and other wood-based mixture components, ammonia gas maintained constant after 3 days of fermentation. However, in the case of sample inoculated B. subtilis SRCM 101269, ammonia gas reduced in course of fermentation time, and concentration of hydrogen sulfide also reduced for 65 ppm. Changes of nitrite concentration according to fermentation time no showed different for cow manure, however nitrite concentration in mixed livestock manure increased when compared to control. And then sulfate concentration in cow manure decreased, and no showed different when compared to the initial fermentation. No apparent change of sulfate concentration in mixed livestock manure detected. Through the previously studies, B. subtilis SRCM 101269 has high potential in industrial application manufacturing the cow manure as removal of livestock manure odor.

INNOVATIVE CONCEPT FOR AN ULTRA-SMALL NUCLEAR THERMAL ROCKET UTILIZING A NEW MODERATED REACTOR

  • NAM, SEUNG HYUN;VENNERI, PAOLO;KIM, YONGHEE;LEE, JEONG IK;CHANG, SOON HEUNG;JEONG, YONG HOON
    • Nuclear Engineering and Technology
    • /
    • v.47 no.6
    • /
    • pp.678-699
    • /
    • 2015
  • Although the harsh space environment imposes many severe challenges to space pioneers, space exploration is a realistic and profitable goal for long-term humanity survival. One of the viable and promising options to overcome the harsh environment of space is nuclear propulsion. Particularly, the Nuclear Thermal Rocket (NTR) is a leading candidate for nearterm human missions to Mars and beyond due to its relatively high thrust and efficiency. Traditional NTR designs use typically high power reactors with fast or epithermal neutron spectrums to simplify core design and to maximize thrust. In parallel there are a series of new NTR designs with lower thrust and higher efficiency, designed to enhance mission versatility and safety through the use of redundant engines (when used in a clustered engine arrangement) for future commercialization. This paper proposes a new NTR design of the second design philosophy, Korea Advanced NUclear Thermal Engine Rocket (KANUTER), for future space applications. The KANUTER consists of an Extremely High Temperature Gas cooled Reactor (EHTGR) utilizing hydrogen propellant, a propulsion system, and an optional electricity generation system to provide propulsion as well as electricity generation. The innovatively small engine has the characteristics of high efficiency, being compact and lightweight, and bimodal capability. The notable characteristics result from the moderated EHTGR design, uniquely utilizing the integrated fuel element with an ultra heat-resistant carbide fuel, an efficient metal hydride moderator, protectively cooling channels and an individual pressure tube in an all-in-one package. The EHTGR can be bimodally operated in a propulsion mode of $100MW_{th}$ and an electricity generation mode of $100MW_{th}$, equipped with a dynamic energy conversion system. To investigate the design features of the new reactor and to estimate referential engine performance, a preliminary design study in terms of neutronics and thermohydraulics was carried out. The result indicates that the innovative design has great potential for high propellant efficiency and thrust-to-weight of engine ratio, compared with the existing NTR designs. However, the build-up of fission products in fuel has a significant impact on the bimodal operation of the moderated reactor such as xenon-induced dead time. This issue can be overcome by building in excess reactivity and control margin for the reactor design.

The Realization on GAS Sensor Module for Inteligent Wireless Communication (지능형 무선통신용 가스 센서 모듈 구현)

  • Kim, Hyo-Chan;Weon, Young-Su;Cho, Hyung-Rae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.6
    • /
    • pp.123-132
    • /
    • 2012
  • Gas sensors has been used very differently that depending on following purposes; Automotive (exhaust gas, fuel mixture gas, oxygen, particulates), agriculture / food industry (fresh, stored, CO2, humidity, NH3, nitrogen oxide gas, organic gas, toxic gas emitted from pesticides and insecticides), industrial / medical (chemical gas, hydrogen, oxygen and toxic gases), military (chemical weapon), environmental measurements (CO and other air pollution consisting of sulfur and nitrogen gas), residential (LNG, LPG, butane, indoor air, humidity). The types of industrial toxic substances are known about 700 species and many of these exist in gaseous form under normal conditions. he multi-gas detection sensors will be developed for casualties that detect the most important and find easy three kinds of gases in marine plant; carbon dioxide(CO2), carbon(CO), ammonia(NH3). Package block consists of gas sensing device minor ingredient, rf front end, zigbee chip. Develope interworking technology between the sensor and zigbee chip inside a package. Conduct a performance test through test jig about prototype zigbee sensor module with rf output power and unwanted emission test. This research task available early address when poisonous gas leaked from large industrial site and contribution for workers' safety at the enclosed space.

Introduction to Researches on the Characteristics of Gas Migration Behavior in Bentonite Buffer (벤토나이트 완충재 내 기체 이동의 거동 특성 관련 연구 동향 소개)

  • Kang, Sinhang;Kim, Jung-Tae;Lee, Changsoo;Kim, Jin-Seoup
    • Tunnel and Underground Space
    • /
    • v.31 no.5
    • /
    • pp.333-359
    • /
    • 2021
  • Gases such as hydrogen and radon can be generated around the canister in high-level radioactive waste disposal systems due to several reasons including the corrosion of metal materials. When the gas generation rate exceeds the gas diffusion rate in the low-permeability bentonite buffer, the gas phase will form and accumulate in the engineered barrier system. If the gas pressure exceeds the gas entry pressure, gas can migrate into the bentonite buffer, resulting in pathway dilation flow and advective flow. Because a sudden occurrence of dilation flow can cause radionuclide leakage out of the engineered barrier of the radioactive waste disposal system, it is necessary to understand the gas migration behavior in the bentonite buffer to quantitatively evaluate the long-term safety of the engineered barrier. Experimental research investigating the characteristics of gas migration in saturated bentonite and research developing numerical models capable of simulating such behaviors are being actively conducted worldwide. In this technical note, previous gas injection experiments and the numerical models proposed to verify such behaviors are introduced, and the future challenges necessary for the investigation of gas migration are summarized.

Preparation and Characterization of Polyvinylidene Fluoride by Irradiating Electron Beam (전자빔 조사를 이용한 Polyvinylidene Fluoride의 제조 및 특성)

  • Choi, Yong-Jin;Kim, Min
    • Applied Chemistry for Engineering
    • /
    • v.22 no.4
    • /
    • pp.353-357
    • /
    • 2011
  • For the purpose of introducing hydrophilic function to pristine PVDF, pristine PVDF was modified under atmosphere and aqueous vapor by irradiating electron beam (EB). EB dose was varied from 0 to 125 K Gray, respectively. Their changes of chemical composition /structure were observed and evaluated by FT-IR, EDS and DSC. Also, their surface behaviors were evaluated by contact angle. In FT-IR study, it was confirmed that hydroxyl functions were introduced to pristine PVDF. In EDS analysis, mole ratio of F (fluoride) was almost constant (about 33%) in spite of increasing EB dose, meaning that hydroxyl function was introduced via dehydrozenation, not via deflurodination. In DSC study, $T_g$ increased with increasing EB dose, which was reconfirmed that hydroxyl function was introduced via dehydrozenation. $T_m$ increased with increasing EB dose, inferring that the increase in EB dose led to more outbreak of hydroxyl function which led to more enhanced hydrogen bond. In the result of contact angle, pristine PVDF film was $62^{\circ}$ and 125 K Gray-irradiated PVDF film was even $13^{\circ}$. All results showed that pristine PVDF was successfully changed to hydrophilic PVDF.

Analytical Method of Multi-Preservatives in Cosmetics using High Performance Liquid Chromatography (HPLC 를 이용한 화장품 중 살균보존제 다성분 동시분석법 연구)

  • Min-Jeong, Lee;Seong-Soo, Kim;Yun-Jeong, Lee;Byeong-Chul, Lee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.48 no.4
    • /
    • pp.321-330
    • /
    • 2022
  • This study attempted to establish an optimal multi-compound simultaneous analysis method that can secure reliable results for 15 - preservatives, 2 - sun screens and 1 - antioxidants of cosmetics using HPLC-PDA. Since the potential of hydrogen (pH) in the mobile phase affects the acid dissociation constant (pKa) of the preservatives, and the peak retention time shift and area change were observed. The peak separation condition was established by adjusting the pH to 0.1% H3PO4 addition (mL) when preparing the mobile phase. As a results of method validation, the linearity correlation coefficient (R2) of above 0.999 were obtained, and accuracy 87.9 ~ 101.1%, 0.1 ~ 7.6% precision for two types of cosmetics (cream and shampoo). It was found that the limit of detection (LOD) was 0.1 ~ 0.2 mg/kg and the limit of quantitation (LOQ) was 2.0 ~ 4.0 mg/kg. In addition, it was possible to simultaneously separate p-anisic acid, a natural compound that was difficult to separate in HPLC due to the small difference from methylparaben, a synthetic preservatives. Through this study, it will be effectively used to secure quality control and safety for compound that need restrictions on use cosmetics.

Scenario Analysis, Technology Assessment, and Policy Review for Achieving Carbon Neutrality in the Energy Sector (에너지 부문의 탄소중립 달성을 위한 국내외 시나리오 분석 및 기술, 정책현황 고찰)

  • Han Saem Park;Jae Won An;Ha Eun Lee;Hyun Jun Park;Seung Seok Oh;Jester Lih Jie Ling;See Hoon Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.496-504
    • /
    • 2023
  • Countries worldwide are striving to find new sources of sustainable energy without carbon emission due to the increasing impact of global warming. With the advancement of the fourth industrial revolution on a global scale, there has been a substantial rise in energy demand. Simultaneously, there is a growing emphasis on utilizing energy sources with minimal or zero carbon content to ensure a stable power supply while reducing greenhouse gas emissions. In this comprehensive overview, a comparative analysis of carbon reduction policies of government was conducted. Based on international carbon neutrality scenarios and the presence of remaining thermal power generation, it can be categorized into two types: "Rapid" and "Safety". For the domestic scenario, the projected power demand and current greenhouse gas emissions in alignment with "The 10th Basic Plan for Electricity Supply and Demand" was examined. Considering all these factors, an overview of the current status of carbon neutrality technologies by focusing on the energy sector, encompassing transitions, hydrogen, transportation and carbon capture, utilization, and storage (CCUS) was offered followed by summarization of key technological trends and government-driven policies. Furthermore, the central aspects of the domestic carbon reduction strategy were proposed by taking account of current mega trends in the energy sector which are highlighted in international scenario analyses.

Evaluation on Odor Removal Performance of Bacteria-Based Odor Reduction Kit for Revetment Blocks (호안블록용 박테리아 기반 악취저감 키트의 악취제거 성능평가)

  • Keun-Hyoek Yang;Ju-Hyun Mun;Ki-Tae Jeong;Hyun-Sub Yoon;Jae-Il Sim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.2
    • /
    • pp.229-238
    • /
    • 2024
  • This study evaluated the odor removal performance of a bacteria-based odor reduction kit. The bacteria used were Rhodobacter capsulatus, Paracoccus limosus, and Brevibacterium hankyongi, which can remove ammonia (NH3), hydrogen sulfide (H2S), total nitrogen (T-P), and total phosphorus (T-N), which are odor pollutants. The materials used were bacteria and porous aggregates (expanded vermiculite, zeolite beads, activated carbon), and the combination of the materials varied depending on the removal mechanism. Materials with a physical adsorption mechanism (zeolite beads and activated carbon) gradually slowed down the concentration reduction rate of odor pollutants (NH3, H2S, T-P, and T-N), and had no further effect on reducing the concentration of odor pollutants after 60 hours. Expanded vermiculite, in which bacteria that remove odors through a bio-adsorption mechanism were immobilized, had a continuous decrease in concentration, and the concentration of odor pollutants reached 0 ppm after 108 hours. As a result, the odor removal performance of materials with physical adsorption mechanisms in actual river water did not meet the odor emission standard required by the Ministry of Environment, while the expanded vermiculite immobilized with bacteria satisfied the odor emission permissible standard and achieved water quality grade 1.

Evaluation of Efficacy and Development of Predictive Model of Sanitizers and Disinfectants on Reduction of Microorganisms on Food Contact Surfaces (스테인리스 스틸 식품기구 표면에 사용되는 주요 살균소독제의 살균력 평가 및 살균예측모델 개발)

  • Lee, Yu-Si;Ha, Sang-Do;Kim, Dong-Ho;Park, Joon-Hee
    • Journal of Food Hygiene and Safety
    • /
    • v.26 no.3
    • /
    • pp.203-208
    • /
    • 2011
  • This study was to evaluate the efficacy of sanitizer concentrations and treatment time against two major toad-borne pathogenic microorganisms such as Escherichia coli and Staphylococcus aureus on a stainless steel surface. As a result, stainless steel, treated with 100 ppm of chlorine showed reduction of E. coli(1.56, 1.49, 1.95 log cfu/25 $cm^2$) and S. aureus(0.49, 0.88, 1.27 log cfu/25 $cm^2$) after 0, 5 and 10 min, but none was not detected in treatment with 200 ppm. The population of E. coli(0.73, 0.90, 1.55 log cfu/25 $cm^2$) and S. aureus(0.37, 1.00, 1.45 log cfu/25 $cm^2$) reduced in 35.5% ethanol treated group, but none was not detected in treatment with 70%. The population was reduced E coli(0.28, 0.64, 1.07 cfu/25 $cm^2$) and S. aureus(0.53, 0.87, 0.99 log cfu/25 $cm^2$) by treatment with 45.5 ppm of hydrogen peroxide, but none was not detected in treatment with 91 ppm. Quarternary ammonium compound with 100 ppm was reduced E. coli(0.82, 1.62, 1.71 log cfu/25 $cm^2$) and S. aureus(0.46, 0.93, 1.38 log cfu/25 $cm^2$), but none was not detected in treatment with 200 ppm. Predictive models of sterilization for all 4 disinfectants were suitable to use with $r^2$ value of higher than 0.94. These models may be of use to food services and manufacture of safe products by controlling E. coli and S. aureus without the need for further detection of the organisms.

Long-term Variation and Characteristics of Water Quality in the Yeoja Bay of South Sea, Korea (여자만 수질환경의 특성과 장기변동)

  • Park, Soung-Yun;Kim, Sang-Soo;Kim, Pyoung-Joong;Cho, Eun-Seob;Kim, Byong-Man;Jeon, Sang-Baek;Jang, Su-Jeng
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.3
    • /
    • pp.203-218
    • /
    • 2011
  • Long-term trends and distribution patterns of water quality were investigated in the Yeoja Bay of South Sea, Korea from 1976 to 2010. Water samples were collected at 3 stations and physicochemical parameters were analyzed including water temperature, salinity, hydrogen ion concentration (pH), dissolved oxygen (DO), chemical oxygen demand (COD), suspended solids (SS) and nutrients. Spatial distribution patterns of temperature, pH and DO were not clear among stations but the seasonal variations were distinct except ammonium. The trend analysis by principal component analysis (PCA) during 31 years revealed the significant variations in water quality in the study area. Spatial water qualities were discriminated into 2 clusters by PCA; station cluster 1 and 2~3. Annual water qualities were clearly discriminated into 4 clusters by PCA. By this multi-variate analysis, the annual trends were summarized as the followings; water temperature, COD and SS tended to increase from late 1970's, decreased salinity, and increased phosphate from 1991 to 2001 and increased dissolved inorganic nitrogen. Water quality was showed by the input of fresh water same as those of Kyoungin coastal area, Asan coastal area, Choensoo bay, Gunsan coastal and Mokpo coastal area in the Yeoja Bay.