• Title/Summary/Keyword: Hydrogen production plant

Search Result 149, Processing Time 0.028 seconds

The Anti-oxidative and Anti-inflammatory Activities of Malus melliana Ethanol Extract (Malus melliana 에탄올 추출물의 항산화 및 항염증 활성)

  • Lee, Su Hyeon;Jin, Kyong-Suk;Kim, Byung Woo;Kwon, Hyun Ju
    • Journal of Life Science
    • /
    • v.27 no.7
    • /
    • pp.783-789
    • /
    • 2017
  • Malus melliana (Hand.-Mazz.) Rehder (M. melliana) is a Chinese plant that belongs to the Rosaceae family. There have been no previous reports regarding its bioactivity. In this study, the anti-oxidative and anti-inflammatory activities of M. melliana ethanol extract (MMEE) were evaluated using a 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical scavenging activity assay, reactive oxygen species (ROS) scavenging activity assay, nitric oxide (NO) inhibitory activity assay, and the analysis of related protein expressions through Western blot hybridization. MMEE showed potent scavenging activity against DPPH, similar to ascorbic acid, a well-known anti-oxidative agent, which was used as a positive control. MMEE also inhibited hydrogen peroxide-induced ROS in RAW 264.7 cells. Moreover, MMEE induced the expression of an anti-oxidative enzyme, heme oxygenase 1, and its upstream transcription factor, nuclear factor E2-related factor-2, in a dose-dependent manner. On the other hand, MMEE was associated with a reduction in NO production, which was induced by the lipopolysaccharide treatment of RAW 264.7 cells. The expression of inducible nitric oxide synthase, which is the upstream regulator of NO production, was also inhibited. Taken together, these results suggest that MMEE has anti-oxidative and anti-inflammatory properties, thus appearing to be a potential anti-oxidant and anti-inflammatory agent. The further identification of active compounds that confer the biological activities of MMEE may be necessary.

Inhibitory Effect of Aged Black Platycodi Radix Extract on Expression and Activation of Matrix Metalloproteinases in Oxidative-stressed Melanoma Cells (쥐 흑색종 세포에서 산화적 스트레스에 의한 MMPs의 발현과 활성에 대한 흑도라지 추출물의 억제 효과)

  • Chae, Yong-Byung;Lee, Soo-Jin;Jang, Ho-Jung;Park, Jung-Ae;Kim, Moon-Moo;Chung, Kyung-Tae
    • Journal of Life Science
    • /
    • v.20 no.5
    • /
    • pp.736-744
    • /
    • 2010
  • The root of Playtcodon grandiflorum, called Platycodi radix, has been a favorite edible plant in Asia and contains a large amount of saponins. Melanoma cells (B16F10) were used to investigate the inhibitory effect of aged black Platycodi radix extract (ABPRE) on oxidative stress and matrix metalloproteinases (MMPs). Platycodon radix has been known to have a variety of medicinal effects such as prevention of gastric ulcers, antiallergenic activities, histamine release inhibition, and antioxidant effects. However, the mechanism of its action remains unclear in humans. ABPRE was prepared using ethanol extraction of aged black Platycodi radix. In an antioxidant effect study of ABPRE, it was observed that ABPRE specifically exhibited the scavenging activity of DPPH radical, but did not inhibit the production of malondialdehyde from lipid peroxidation. DNA oxidation was also blocked in the presence of ABPRE. In addition, ABPRE decreased the expression and activation of MMP-2 stimulated by phenazine methosulfate. Furthermore, ABPRE revealed the inhibitory effect on melanin production induced by L-dopa via antioxidant effect and the reduction of tyrosinase expression. Especially, the expression of antioxidant enzymes such as SOD-1 and SOD-2 regulated by Nrf2 was increased in the presence of ABPRE. Therefore, it appears that ABPRE may be a possible chemopreventive agent for the prevention of metastasis related to oxidative stress.

Analysis of EQ pH Condition and Fission Product Removal Capability for Nuclear Power Plant (원전의 내환경기기검증 화학환경 및 핵분열생성물 제거능력 평가)

  • Song, Dong Soo;Ha, Sang Jun;Seong, Je Joong;Jeon, Hwang Yong;Huh, Seong Cheol
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.186-190
    • /
    • 2014
  • Nuclear Power Plants require the control ability of chemical condition (pH) because pH control during transient accident such as LOCA makes an able the fission product removal capability to be maintained, stress corrosion cracking of stainless steel equipment to be prevented and the production of hydrogen by aluminum and zinc to be minimized. An NPP is designed to control the pH of containment spray and sump coolant using the spray additives 30% NaOH in the event of loss of coolant accident. In this paper, the pH of sump coolant of an NPP during LOCA was analyzed and the fission products removal constant and decontamination factor were calculated according to Standard Review Plan 6.5.2 related to spray chemical conditions of pH. The calculated pH value of recirculation mode using the computer code corresponds to 8.09~9.67, which meets the chemical environment regulation requirements. The fission product removal capability caused by containment spray system is performed to provide input to radiation analysis.

Experimental study on the characteristics of Vacuum residue gasification in an entrained-flow gasifier (습식 분류상 가스화장치를 이용한 중질잔사유(Vacuum residue)의 가스화 특성연구)

  • ;;;;;;;A. Renevier
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2002.11a
    • /
    • pp.171-184
    • /
    • 2002
  • Approx. 200,000 bpd vacuum residue oil is produced from oil refineries in Korea. These are supplying to use asphalt, high sulfur fuel oil, and upgrading at the residue hydro-desulfurization unit. Vacuum residue oil has high energy content, however high sulfur content and high concentration of heavy metals represent improper low grade fuel. To meet growing demand for effective utilization of vacuum residue oil from refineries, recently some of the oil refinery industries in Korea, such as SK oil refinery and LG Caltex refinery, have already proceeded feasibility study to construct 435-500 MWe IGCC power plant and hydrogen production facilities. Recently, KIER(Korea Institute of Energy Research) are studing on the Vacuum Residue gasification process using an oxygen-blown entrained-flow gasifier. The experiment runs were evaluated under the reaction temperature : 1,100~1,25$0^{\circ}C$, reaction pressure : 1~6kg/$\textrm{cm}^2$G, oxygen/V.R ratio : 0.8~0.9 and steam/V.R ratio : 0.4-0.5. Experimental results show the syngas composition(CO+H$_2$) : 85~93%, syngas flow rate : 50~110Mm$^3$/hr, heating value : 2,300~3,000 ㎉/Nm$^3$, carbon conversion : 65~92, cold gas efficiency : 60~70%. Also equilibrium modeling was used to predict the vacuum residue gasification process and the predicted values were compared reasonably well with experimental data.

  • PDF

Experimental Study on the Characteristics of Vacuum Residue Gasification in an Entrained-flow Gasifier (습식 분류상 가스화장치를 이용한 중질잔사유(Vacuum Residue)의 가스화 특성연구)

  • ;;;;;;;A. Renevier
    • Journal of Energy Engineering
    • /
    • v.12 no.1
    • /
    • pp.49-57
    • /
    • 2003
  • Approx. 200.000 bpd vacuum residue oil is produced from oil refineries in Korea, and is supplied to use asphalt, high sulfur fuel oil and for upgrading at the residue hydro-desulfurization unit. Vacuum residue oil has high energy content, however its high sulfur content and high concentration of heavy metals represent improper low grade fuel. To meet growing demand for effective utilization of vacuum residue oil from refineries, recently some of the oil refinery industries in Korea, such as SK oil refinery and LG Caltex refinery, have already proceeded feasibility study to construct 435~500 MWe IGCC power plant and hydrogen production facilities. Recently, KIER (Korea Institute of Energy Research) are studying on the Vacuum Residue gasification process using an oxygen-blown entrained-flow gasifier. The experiment runs were evaluated under the reaction temperature: 1.100~l,25$0^{\circ}C$, reaction pressure: 1~6 kg/$\textrm{cm}^2$G, oxygen/V.R ratio: 0.8~0.9 and steam/V.R ratio: 0.4~0.5. Experimental results show the syngas composition (CO+H$_2$): 85~93%, syngas flow rate: 50~l10 Nm$^3$/hr, heating value: 2,300~3,000 k㎈/Nm$^3$, carbon conversion: 65~92, cold gas efficiency: 60~70%. Also equilibrium modeling was used to predict the vacuum residue gasification process and the predicted values were compared reasonably well with experimental data.

Uranyl Peroxide Compound Preparation from the Filtrate for Nuclear Fuel Powder Production Process (핵연료분말 제조공정 여액으로부터 Uranyl-peroxide 화합물의 제조)

  • Jeong, Kyung-Chai;Kim, Tae-Joon;Choi, Jong-Hyun;Park, Jin-Ho;Hwang, Seong-Tae
    • Applied Chemistry for Engineering
    • /
    • v.8 no.3
    • /
    • pp.430-437
    • /
    • 1997
  • Uranyl-peroxide compound was prepared by the reaction of excess hydrogen peroxide solution and trace uranium in filtrate from nuclear fuel conversion plant. The $CO_3{^{2-}}$ in filtrate was removed first by heating more than $98^{\circ}C$, because uranyl-peroxide compound could not be precipitated by $CO_3{^{2-}}$ remaining in filtrate. The optimum condition for uranyl-peroxide compound was ageing for 1 hr after controling the pH with $NH_3$ gas and adding the excess $H_2O_2$ of 10ml/lit.-filtrate. Uranium concentration in the filtrate was appeared to 3 ppm after the precipitation of uranyl-peroxide compound, and the chemical composition of this compound was analyzed to $UO_4{\cdot}2NH_4F$ with FT-IR, X-ray diffractometry, TG and chemical analysis. Also, this fine particle, about $1{\sim}2{\mu}m$, could be grown up to $4{\mu}m$ at pH 9.5 and $60^{\circ}C$. The separation efficiency of precipitate from mother liquor was increased with increase of pH and reaction temperature. Otherwise, the crystal form of this particle showed octahedral by SEM and XRD, and $U_3O_8$ powder was obtained by thermal decomposition at $650^{\circ}C$ in air atmosphere.

  • PDF

Numerical simulation of gasification of coal-water slurry for production of synthesis gas in a two stage entrained gasifier (2단 분류층 가스화기에서 합성가스 생성을 위한 석탄 슬러리 가스화에 대한 수치 해석적 연구)

  • Seo, Dong-Kyun;Lee, Sun-Ki;Song, Soon-Ho;Hwang, Jung-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.417-423
    • /
    • 2007
  • Oxy-gasification or oxygen-blown gasification, enables a clean and efficient use of coal and opens a promising way to CO2 capture. The coal gasification process of a slurry feed type, entrained-flow coal gasifier was numerically predicted in this paper. The purposes of this study are to develop an evaluation technique for design and performance optimization of coal gasifiers using a numerical simulation technique, and to confirm the validity of the model. By dividing the complicated coal gasification process into several simplified stages such as slurry evaporation, coal devolatilization, mixture fraction model and two-phase reactions coupled with turbulent flow and two-phase heat transfer, a comprehensive numerical model was constructed to simulate the coal gasification process. The influence of turbulence on the gas properties was taken into account by the PDF (Probability Density Function) model. A numerical simulation with the coal gasification model is performed on the Conoco-Philips type gasifier for IGCC plant. Gas temperature distribution and product gas composition are also presented. Numerical computations were performed to assess the effect of variation in oxygen to coal ratio and steam to coal ratio on reactive flow field. The concentration of major products, CO and H2 were calculated with varying oxygen to coal ratio (0.2-1.5) and steam to coal ratio(0.3-0.7). To verify the validity of predictions, predicted values of CO and H2 concentrations at the exit of the gasifier were compared with previous work of the same geometry and operating points. Predictions showed that the CO and H2 concentration increased gradually to its maximum value with increasing oxygen-coal and hydrogen-coal ratio and decreased. When the oxygen-coal ratio was between 0.8 and 1.2, and the steam-coal ratio was between 0.4 and 0.5, high values of CO and H2 were obtained. This study also deals with the comparison of CFD (Computational Flow Dynamics) and STATNJAN results which consider the objective gasifier as chemical equilibrium to know the effect of flow on objective gasifier compared to equilibrium. This study makes objective gasifier divided into a few ranges to study the evolution of the gasification locally. By this method, we can find that there are characteristics in the each scope divided.

  • PDF

Development of Algorithm for Vibration Analysis Automation of Rotating Equipments Based on ISO 20816 (ISO 20816 기반 회전기기 진동분석 자동화 알고리즘 개발)

  • JaeWoong Lee;Ugiyeon Lee;Jeongseok Oh
    • Journal of the Korean Institute of Gas
    • /
    • v.28 no.2
    • /
    • pp.93-104
    • /
    • 2024
  • Facility diagnosis is essential for the smooth operation and life extension of rotating equipment used in industrial sites. Compared to other diagnostic methods, vibration diagnosis can find most of the initial defects, such as unbalance, alignment failure, bearing defects and resonance, compared to other diagnostic methods. Therefore, vibration analysis is the most commonly used facility diagnosis method in industrial sites, and is usefully used as a predictive preservation (PdM) technology to manage the condition of the facility. However, since the vibration diagnosis method is performed based on experience based on the standard, it is carried out by experts. Therefore, it is intended to contribute to the reliability of the facility by establishing a system that anyone can easily judge defects by establishing a vibration diagnosis method performed based on experience as a knowledgeable code system. An algorithm was developed based on the ISO-20816 standard for vibration measurement, and the reliability was verified by comparing the results of vibration measurement at various demonstration sites such as petrochemical plant compressors, hydrogen charging stations, and industrial machinery with the results of analysis using a development system. The developed algorithm can contribute to predictive maintenance (PdM) technology that anyone can diagnose the condition of the rotating machine at industrial sites and identify defects early to replace parts at the exact time of replacement. Furthermore, it is expected that it will contribute to reducing maintenance costs and downtime due to the failure of rotating machines when applied to various industrial sites such as oil refining facilities, transportation, production facilities, and aviation facilities.

Empirical Study of Biogas Purification Equipment (바이오가스 정제 설비의 실증 연구)

  • Hwan Cheol Lee;Jae-Heon Lee
    • Plant Journal
    • /
    • v.18 no.4
    • /
    • pp.58-65
    • /
    • 2023
  • In this study, to increase the methane content of biogas supplied from Nanji Water Regeneration Center and to purify impurities, a three-stage membrane purification process was designed and installed to demonstrate operation. The methane concentration of biomethane produced in the 2 Nm3/h purification process was set to three cases: 95%, 96.5%, and 98%, and the membrane area ratio of the membrane was 1:1, 1:2, 1:1:1, The optimum conditions for the membrane area of the separator were derived by changing to five of 1:2:1 and 1:2:2. 3 stage separation membrane process of 30 Nm3/h was installed to reflect the optimum condition of 2 Nm3/h, and biomethane production of 98% or more of methane concentration was demonstrated. As a result of the operation of the 2 Nm3/h refining device, the methane recovery rate at the 98% methane concentration was 95.6% when the membrane area ratio was 1:1 as the result of the two-stage operation of the separator, and the recovery rate of methane at 1:2 was increased to 96.8%. The methane recovery rate of the membrane three-stage operation was highest at 96.8% when the membrane area ratio was operated at 1:2:1. The carbon dioxide removal rate was 16.4 to 96.4% and the 2:2 to 95.7% film area ratio in the two-step process. In the three-step process, the film area ratio was 1:2:1 to 95.4%, and the two-step process showed higher results than the three-step process. In the 30 Nm3/h scale biogas purification demonstration operation, the methane concentration after purification was 98%, the recovery rate of methane was 97.1%, the removal rate of carbon dioxide was 95.7%, and hydrogen sulfide, the cause of corrosion, was not detected, and the membrane area ratio was 1:2:1 demonstration operation, biomethane production with a methane concentration of 98% or higher was possible.

  • PDF