• 제목/요약/키워드: Hydrogen production cost

검색결과 130건 처리시간 0.027초

Low Cost, Large Area Nanopatterning via Directed Self-Assembly

  • 김상욱
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.24-25
    • /
    • 2011
  • Molecular self-assembly has several advantages over other nanofabrication methods. Molecular building blocks ensure ultrafine pattern precision, parallel structure formation allows for mass production and a variety of three-dimensional structures are available for fabricating complex structures. Nevertheless, the molecular interaction for self-assembly generally relies on weak forces such as van der Waals force, hydrogen bonding, or hydrophobic interaction. Due to the weak interaction, the structure formation is usually slow and the degree of ordering is low in a self-assembled structure. To promote self-assembly, directed assembly methods employing prepatterned substrates or external fields have been developed and gathered a great deal of technological attention as a next generation nanofabrication process. In this presentation a variety of directed assembly methods for soft nanomaterials including block copolymers, peptides and carbon nanomaterials will be introduced. Block copolymers are representative self-assembling materials extensively utilized in nanofabrication. In contrast to colloid assembly or anodized metal oxides, various shapes of nanostructures, including lines or interconnected networks, can be generated with a precise tunability over their shape and size. Applying prepatterned substrates$^{1,2}$ or introducing thickness modulation$^3$ to block copolymer thin films allowed for the control over the orientational and positional orderings of self-assembled structures. The nanofabrication processes for metals, semiconductors$^4$, carbon nanotubes$^{5,6}$, and graphene$^{6,7}$ templating block copolymer self-assembly will be presented.

  • PDF

포장용지류에서의 중금속 분석을 위한 산분해 전처리 방법의 탐색 (Considerations of Acid Decomposition System for the Analysis of Heavy Metals in Packaging-grade Paper)

  • 이태주;고승태;김형진
    • 펄프종이기술
    • /
    • 제43권1호
    • /
    • pp.65-73
    • /
    • 2011
  • The fibrous raw materials in packaging-grade paper production in Korea were mainly obtained from waste paper. The use of recycled paper has both positive and negative impacts in papermaking process. The primary positive impacts are the environmental protection and manufacturing cost reduction, and the negative impacts are the quality reduction in paper quality and the accumulation of heavy metals and other pollutants in wet- and dry-end process. This study was carried out to consider the optimum acid decomposition system with the highest recovery rate for the analysis of heavy metals in packaging-grade paper. The open digestion system using Kjeldahl apparatus and the closed digestion system using microwave oven for decomposing the organic materials in paper were compared. In both open and closed digestion method, the combination of nitric acid, hydrochloric acid and hydrogen peroxide showed higher recovery rate than using only nitric acid alone because the presence of Cl- ions in hydrochloric acid stabilizes ligand formation with metal ions. KOCC was observed to have the highest heavy metal content among the recycled paper samples. The heavy metal contents decomposed with the closed digestion system were relatively higher than with open digestion system.

호주 Olympic Dam 사례를 바탕으로 한 MT 기반 심부 지하 광물자원 탐사의 국내 적용성 (Domestic applicability of MT-based deep underground resource exploration based on the Australia Olympic Dam case)

  • 정동호;류경호;오석훈
    • 산업기술연구
    • /
    • 제41권1호
    • /
    • pp.21-24
    • /
    • 2021
  • In this study, the development and production of electric vehicles and hydrogen vehicles are presented as a method for realizing carbon-neutral. Accordingly, the demand and need for development of underground metal mineral resources such as copper and nickel has increased. The research was carried out using MT survey, which is very useful for deep exploration such as mineral resources and oil exploration because of it's low cost and explorable depth. In Korea, there are very few cases of MT exploration in terms of mineral development, so the study was conducted based on the MT exploration conducted previously in AusLAMP, Australia. Through comparative analysis of the MT exploration data conducted to identify the ore body in the deep area of the Olympic Dam in Australia, with the data directly calculated in 2D inversion, it was confirmed that it can have a positive effect on the possibility of resource development and carbon neutrality using MT exploration in Korea.

Techno-Economic Study on Non-Capture CO2 Utilization Technology

  • Lee, Ji Hyun;Lee, Dong Woog;Kwak, No-Sang;Lee, Jung Hyun;Shim, Jae-Goo
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제2권1호
    • /
    • pp.109-113
    • /
    • 2016
  • Techno-economic evaluation of Non-Capture $CO_2$ Utilization (NCCU) technology for the production of high-value-added products using greenhouse gas ($CO_2$) was performed. The general scheme of NCCU process is composed of $CO_2$ carbonation and brine electrolysis process. Through a carbonation reaction with sodium hydroxide that is generated from brine electrolysis and $CO_2$ of the flue gas, it is possible to get high-value-added products such as sodium bicarbonate, sodium hydroxide, hydrogen & chloride and also to reduce the $CO_2$ emission simultaneously. For the techno-economic study on NCCU technology, continuous operation of bench-scale facility which could treat $2kgCO_2/day$ was performed. and based on the key performance data evaluated, the economic evaluation analysis targeted on the commercial chemical plant, which could treat 6 tons $CO_2$ per day, was performed using the net present value (NPV) metrics. The results showed that the net profit obtained during the whole plant operation was about 7,890 mKRW (million Korean Won) on NPV metrics and annual $CO_2$ reduction was estimated as about $2,000tCO_2$. Also it was found that the energy consumption of brine electrolysis is one of the key factors which affect the plant operation cost (ex. electricity consumption) and the net profit of the plant. Based on these results, it could be deduced that NCCU technology of this study could be one of the cost-effective $CO_2$ utilization technology options.

A Method for Determination of Nitrogen in Ruminant Feedstuffs and Products

  • Islam, M.R.;Ishida, M.;Ando, S.;Nishida, T.;Yamada, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제16권10호
    • /
    • pp.1438-1442
    • /
    • 2003
  • A method for the determination of nitrogen in ruminant feedstuffs, products and excreta (e.g. milk and urine) using a spectrophotometer is developed, where samples processed for P determination are also used to determine N. Samples are digested with sulphuric acid and subsequently with hydrogen peroxide in Kjeldahl tubes. Digested solutions along with phenol and buffered alkaline hypochlorite reagents are incubated in a water bath at $37^{\circ}C$ for 30 min and presented in the spectrophotometer. The spectrophotometer set at 625 nm measures the concentration of N of each sample. Nitrogen in 261 of the samples was also determined by the classical Kjeldahl method in order to develop a relationship between N determined by the Kjeldahl method (Y) and the colorimetric method (X). The mean value of Y was as high as that of X (0.92 vs. 0.96; p>0.05). The colorimetric method predicted Kjeldahl N highly significantly (Y=0.985X-0.024, $R^2=0.993$, p<0.001; or more simply Y=0.974X, $R^2=0.993$, p<0.001). An analysis of regression found no difference (p>0.05; both t-test and F-test) between colorimetric (0.96% N) and adjusted (0.96% N) N. In comparison with the Kjeldahl method, the analytical capacity of N by colorimetric method increases greatly, where 200-300 determinations of N are possible in a working day. In addition, the system provides an opportunity to use not only the same digested solution for both N and P determination of a particular sample, but also uses the same spectrophotometer to assay both N and P. Therefore, the system may be attractive in situations where both elements of a sample are to be determined. In conclusion, the speed of N determination, low cost, efficient use of labour, time and reagents, fewer items of equipment, and the reduction of environmental pollution by reducing effluent and toxic elements are the advantages of this method of N determination.

용융탄산염 연료전지용 디젤의 수소첨가탈황 (Hydrodesulfurization of Diesel for Molten Carbonate Fuel Cell Applications)

  • 김민수;김현구;장성철;김영천;최선희;윤성필;한종희;남석우;최대기;함형철
    • 한국수소및신에너지학회논문집
    • /
    • 제26권1호
    • /
    • pp.21-27
    • /
    • 2015
  • Hydrogen production from commercial diesel fuels is an attactive option for energy generation purpose due to the low cost and good availability of diesel fuels. However, in order to utilize commercial diesel fuels, the sulfur contents must be removed down to approximately 0.1 ppm level to protect the fuel cell catalysts from poisoning. Commercial catalysts $CoMo/Al_2O_3$ and $NiMo/Al_2O_3$ were tested for HDS (Hydrodesulfurization) of model diesel and commercial diesel. The experimental conditions were $250-400^{\circ}C$ and LHSV (Liquid Hourly Space Velocity) $0.27-2.12hr^{-1}$. $NiMo/Al_2O_3$ was found to be more effective than $CoMo/Al_2O_3$ in removing sulfur from model diesel. Based on the experimental results of model diesel, commercial diesel fuel purchased from a local petrol station was tested for HDS using $NiMo/Al_2O_3$. The GC-SCD (Gas Chromatography Sulfur Chemiluminescence Detector) results showed that the DMDBT (Dimethyldibenzothiophene) derivatives were fully removed from the commercial diesel fuel proving that HDS with $NiMo/Al_2O_3$ is technically feasible for industrial applications.

제올라이트: 압력순환형 흡착제로서의 특성과 CO2 흡착성능 (Zeolites: Their Features as Pressure Swing Adsorbents and CO2 Adsorption Capacity)

  • 김문현;조일흠;최상옥;추수태
    • 한국환경과학회지
    • /
    • 제23권5호
    • /
    • pp.943-962
    • /
    • 2014
  • Industrial gas drying, dilute gas mixtures purification, air fractionation, hydrogen production from steam reformers and petroleum refinery off-gases, etc are conducted by using adsorptive separation technology. The pressure swing adsorption (PSA) has certain advantages over the other methods, such as absorption and membrane, that are a low energy requirement and cost-effectiveness. A key component of PSA systems is adsorbents that should be highly selective to a gas being separated from its mixture streams and have isotherms suitable for the operation principle. The six standard types of isotherms have been examined in this review, and among them the best behavior in the adsorption of $CO_2$ as a function of pressure was proposed in aspects of maximizing a working capacity upon excursion between adsorption and desorption cycles. Zeolites and molecular sieves are historically typical adsorbents for such PSA applications in gas and related industries, and their physicochemical features, e.g., framework, channel structure, pore size, Si-to-Al ratio (SAR), and specific surface area, are strongly associated with the extent of $CO_2$ adsorption at given conditions and those points have been extensively described with literature data. A great body of data of $CO_2$ adsorption on the nanoporous zeolitic materials have been collected according to pressure ranges adsorbed, and these isotherms have been discussed to get an insight into a better $CO_2$ adsorbent for PSA processes.

Effect of deposition parameters on structure of ZnO films deposited by an DC Arc Plasmatron

  • Penkov, Oleksiy V.;Chun, Se-Min;Kang, In-Jae;Lee, Heon-Ju
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.255-255
    • /
    • 2011
  • Zinc oxide based thin films have been extensively studied in recent several years because they have very interesting properties and zinc oxide is non-poisonous, abundant and cheap material. ZnO films are employed in different applications like transparent conductive layers in solar cells, protective coatings and so on. Wide industrial application of the ZnO films requires of development of cheap, effective and scalable technology. Typically used technologies don't completely satisfy the industrial requirements. In the present work, we studied effect of the deposition parameters on the structure and properties of ZnO films deposited by DC arc plasmatron. The varied parameters were gas flow rates, precursor composition, substrate temperature and post-deposition annealing temperature. Vapor of Zinc acetylacetone was used as source materials, oxygen was used as working gas and argon was used as the cathode protective gas and a transport gas for the vapor. The plasmatron power was varied in the range of 700-1500 watts. Flow rate of the gases and substrate temperature rate were varied in the wide range to optimize the properties of the deposited coatings. After deposition films were annealed in the hydrogen atmosphere in the wide range of temperatures. Structure of coatings was investigated using XRD and SEM. Chemical composition was analyzed using x-ray photoelectron spectroscopy. Sheet conductivity was measured by 4-point probe method. Optical properties of the transparent ZnO-based coatings were studied by the spectroscopy. It was shown that deposition by a DC Arc plasmatron can be used for low-cost production of zinc oxide films with good optical and electrical properties. Increasing of the oxygen content in the gas mixture during deposition allow to obtain high-resistive protective and insulation coatings with high adhesion to the metallic surface.

  • PDF

HFCVD에 의한 증착압력 변화에 따른 Single Crystal Diamond 합성 (Synthesis of Single Crystal Diamond by Variation of Deposition Pressure by HFCVD)

  • 김민수;배문기;김성우;김태규
    • 열처리공학회지
    • /
    • 제33권1호
    • /
    • pp.20-24
    • /
    • 2020
  • Single crystal diamonds are in great demand in such fields as mechanical, electronic applications and optoelectronics. Large area single crystal diamonds are attracting attention in future industries for mass production and low cost. In this study, hot filament CVD (HFCVD) is used to grow large area single crystal diamond. However, the growth rate of large area single crystal diamond using HFCVD is known to be very low. The goal of this study is to use single crystal diamond substrates in HFCVD with methane-hydrogen gas mixtures to increase the growth rate of single crystal diamond and to optimize the conditions by analysing the effects of deposition conditions for high quality crystallinity. The deposition pressure, the ratio of CH4/H2 gas, the substrate temperature and the distance between the filament and the substrate were optimized. The sample used a 4×4 (mm2) size single crystal diamond substrate (100), the CH4/H2 gas ratio was fixed at 5%, the substrate temperature was synthesized to about 1000℃. At this time, the deposition pressure was changed to three types of 50, 75, 85 Torr and deposited. Finally, optimization was investigated under pressure conditions to analyse the growth rate and quality of single crystal diamond.

염색공장의 흡진율 계측을 위한 복합센서 흡진율 계측 모델 개발 (Development of a complex sensor software for measuring the exhaustion rate of dyeing factories)

  • 이정인;박완기;김상하
    • 전기전자학회논문지
    • /
    • 제26권2호
    • /
    • pp.219-225
    • /
    • 2022
  • 우리나라의 섬유산업 중 염색가공 분야는 에너지 다소비 업종으로, 노동 집약적 특성에 따라 원단위 생산성이 낮고, 대부분 중소·영세기업 특징이 있다. 염색 원단의 불량률이 높아지면 재염색으로 인한 생산단가 상승과 초과 에너지 투입으로 비용이 증가하기 때문에, 불량률을 최소를 통한 생산량 향상이 초점이었다. 또한 고온고압의 환경에서 이루어지는 염색공정은 사고 위험으로 염색기 원단 투입구를 실시간으로 개방할 수 없기 때문에 실시간으로 원단의 염색상태 확인이 어려웠다. 최근에는 염액을 실시간으로 모니터링하는 연구가 활발히 진행중이다. 본 논문에서는 탁도, pH, 전도도 센서를 이용하여 염액의 흡진율을 계측할 수 있는 복합센서 흡진율 모델 및 구성시스템을 제안하였으며, 실험방법소개와 실험결과 분석을 실시하였다.