• Title/Summary/Keyword: Hydrogen pipe

Search Result 109, Processing Time 0.025 seconds

A Review of Corrosion and Hydrogen Diffusion Behaviors of High Strength Pipe Steel in Sour Environment

  • Kim, Sung Jin;Kim, Kyoo Young
    • Journal of Welding and Joining
    • /
    • v.32 no.5
    • /
    • pp.13-20
    • /
    • 2014
  • A brief overview is given of the corrosion and hydrogen diffusion behaviors of high strength pipe steel in sour environment. Firstly, hydrogen adsorption and diffusion mechanism of the pipe steel is introduced. Secondly, the effect of iron sulfide film precipitated as a result of the corrosion reaction on the steel surface on hydrogen reduction reaction and subsequent hydrogen permeation through the steel is discussed. Moreover, the hydrogen diffusion behavior of the pipe steel under tensile stress in both elastic and plastic ranges is reviewed based on a number of experimental permeation data and theoretical models describing the hydrogen diffusion and trapping phenomena in the steel. It is hoped that this paper will result in significant academic contributions in the field of corrosion and hydrogen related problems of the pipe steel used in sour environment.

A Study on Stratification Phenomena of Still Hydrogen-Methane Gas Mixture in a Vertical Urban Gas Pipe (도시가스 수직 배관 내 정지된 수소-메탄 혼합가스의 성층화 현상 연구)

  • Tae Kyun Kim;Jung Min Cho;Jaeyong Sung
    • Journal of the Korean Society of Visualization
    • /
    • v.22 no.1
    • /
    • pp.68-78
    • /
    • 2024
  • The stratification phenomena of still hydrogen (20%) and methane (80%) gas mixture in a vertical urban gas pipe have been investigated by simulating the flows based on a mixture model. The stratification is accompanied with the natural convection by the buoyancy force. The hydrogen volume fraction in the upper sections of the pipe increases with time but the increasing rate gets smaller due to the weaker buoyancy force. The pipe with a smaller diameter exhibits a higher peak of hydrogen concentration. The size of vortices is proportional to the pipe diameter. The slip velocity between hydrogen and methane oscillates with a large amplitude at the earlier stage of stratification and then the amplitude decreases sharply. The slip velocity decreases with the diameter, making the stratification become slower. The length of pipe does not affect the stratification since the pipe is sufficiently long relative to the size of vortices.

Mechanical Strength Evaluation of A53B Carbon Steel Subjected to High Temperature Hydrogen Attack

  • Kim, Maan-Won;Lee, Joon-Won;Yoon, Kee-Bong;Park, Jai-Hak
    • International Journal of Safety
    • /
    • v.6 no.2
    • /
    • pp.1-7
    • /
    • 2007
  • In this study mechanical strength of A53B carbon steel was analyzed using several types of test specimens directly machined from oil recycling pipe experienced a failure due to hydrogen attack in chemical plants. High temperature hydrogen attack (HTHA) is the damage process of grain boundary facets due to a chemical reaction of carbides with hydrogen, thus forming cavities with high pressure methane gas. Driven by the methane gas pressure, the cavities grow on grain boundaries forming intergranular micro cracks. Microscopic optical examination, tensile test, Charpy impact test, hardness measurement, and small punch (SP) test were performed. Carbon content of the hydrogen attacked specimens was dramatically reduced compared with that of standard specification of A53B. Traces of decarburization and micro-cracks were observed by optical and scanning electron microscopy. Charpy impact energy in hydrogen attacked part of the pipe exhibited very low values due to the decarburization and micro fissure formation by HTHA, on the other hand, data tested from the sound part of the pipe showed high and scattered impact energy. Maximum reaction forces and ductility in SP test were decreased at hydrogen attacked part of the pipe compared with sound part of the pipe. Finite element analyses for SP test were performed to estimate tensile properties for untested part of the pipe in tensile test. And fracture toughness was calculated using an equivalent strain concept with SP test and finite element analysis results.

A Study on the Properties of Nitrogen Purging in Liquefied Hydrogen Vent Pipes (액화수소 벤트 배관의 질소 퍼지에 대한 적정성 연구)

  • Myoung Sun Wu;Chang Jun Lee
    • Journal of the Korean Society of Safety
    • /
    • v.39 no.3
    • /
    • pp.14-19
    • /
    • 2024
  • Hydrogen is one of the most popular eco-friendly energy sources for reducing global warming. To use hydrogen as a conventional fuel, liquid hydrogen plants should introduce waste hydrogen treatment processes. A major safety issue of liquid hydrogen plants is choosing the most suitable purge gas to use in case of an accident. A purge gas prevents the formation of explosive mixed gases in the vent header. In general, nitrogen is the main purge gas used in chemical plants. Nitrogen has a freezing point of -210℃, which is higher than the boiling point of hydrogen. Helium, with a freezing point lower than hydrogen, is instead recommended as a purge gas of the vent header during hydrogen liquefaction. However, helium is roughly 100 times more expensive than nitrogen. To address this issue, this study uses simulations to investigate safe conditions for introducing nitrogen as the purge gas during hydrogen liquefaction. The temperature change from the safety valve to the vent header is evaluated when the external temperature of the safety valve discharge pipe is at 5℃, 10℃, and 20℃. Additionally, the most optimal length for a discharge pipe according to pipe diameter is investigated.

A Study of Application on the Pulsating Heat Pipe for Heat Transfer Enhancement of Metal Hydride Alloy (수소 저장합금층의 열전달 촉진을 위한 진동형 히트 파이프 적용에 관한 연구)

  • Lee, Min-Jae;Im, Yong-Bin;Bae, Sang-Chul;Kim, Jong-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.346-351
    • /
    • 2006
  • When metallic alloys are reacted to hydrogen, heat transfer of storage tank effects hydrogen storage rate and capacity. If pulsating heat pipe are used to improve heat transfer efficiency, production of hydrogen storage tank can be more simple and economical. Experiment of heat pipe was conducted by varying working fluids and heat flux. According to supply heat flux, test indicate that R-22 and R-l42b were found lower temperature difference between evaporator and condenser than R-134a and Ethanol. Thermal resistances of R-22 and R-142b were also lower than others. Using R-142b as a working fluid, heat pipe type hydrogen storage tank is tested in absorption and desorption processes.

  • PDF

Analysis of Hydrogen-tightness on the Metal Sealing of a Fuel Pipe for FCEV according to Material Change of the Fitting Body (체결부 재료에 따른 FCEV 연료파이프 메탈 씰링부의 기밀성 분석)

  • Lee, J.M.;Han, E.S.;Chon, M.S.;Lee, H.W.
    • Transactions of Materials Processing
    • /
    • v.28 no.5
    • /
    • pp.266-274
    • /
    • 2019
  • Metal sealing is used to connecting the parts between valves and fuel pipes for a FCEV which utilizes hydrogen gas of 700 bar. Instead of general carbon steel, stainless steel is the primary material used to manufacture fuel pipes due to hydrogen embrittlement. The shape of deformation between metals is an important factor on the air-tightness of the metal to metal contact. Since the stainless steel pipe is hardened using the plastic forming during the tip shaping stage, this work hardening could have an effect on the deformed shape and characteristics of contact surfaces in fastening of pipes. In this paper, the deformation history of the pipe model was considered in order to analyze the hydrogen-tightness on the metal sealing part. The contact distance and the forward displacement for fastening were compared using experimental results and the simulation results. The simulation of the effect of material change on the fitting body demonstrated that the hardness or the strength of the formed tip of the pipe was designed to a proper valued level since the characteristics of the contact surface was exhibited better when the strength of the pipe was lower than that of the fitting body.

Evaluation of HIC Resistance for Thick-wall Welded Pipe (후육 용접 강관의 HIC 저항성 평가)

  • Seo Jun Seok;Kim Hee Jin;Ryoo Hoi-Soo
    • Journal of Welding and Joining
    • /
    • v.23 no.3
    • /
    • pp.34-39
    • /
    • 2005
  • It is required for the steel materials used in the sour environment to have sufficient resistance to hydrogen induced cracking(HIC). For line pipe steels, HIC resistance could be varied during pipe making process due to the large plastic deformation applied in the thick-wall pipe. In order to figure out such effect, HIC tests were performed not only in the plate condition but in the pipe condition and their results were compared in terms of cracking ratio. Test results demonstrated a detrimental effect of plastic deformation to HIC resulting in a substantial increase in the cracking ratio after pipe forming process. All of the cracks found in the pipe material were located in the outer layer of pipe where the tensile strain was resulted during pipe forming stage. In order to understand the HIC resistance of the pipe but in the plate condition, it was suggested to pre-strain the plate to some extent before the HIC test.

SAFETY STUDIES ON HYDROGEN PRODUCTION SYSTEM WITH A HIGH TEMPERATURE GAS-COOLED REACTOR

  • TAKEDA TETSUAKI
    • Nuclear Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.537-556
    • /
    • 2005
  • A primary-pipe rupture accident is one of the design-basis accidents of a High-Temperature Gas-cooled Reactor (HTGR). When the primary-pipe rupture accident occurs, air is expected to enter the reactor core from the breach and oxidize in-core graphite structures. This paper describes an experiment and analysis of the air ingress phenomena and the method fur the prevention of air ingress into the reactor during the primary-pipe rupture accident. The numerical results are in good agreement with the experimental ones regarding the density of the gas mixture, the concentration of each gas species produced by the graphite oxidation reaction and the onset time of the natural circulation of air. A hydrogen production system connected to the High-Temperature Engineering Test Reactor (HTTR) Is being designed to be able to produce hydrogen by themo-chemical iodine-Sulfur process, using a nuclear heat of 10 MW supplied by the HTTR. The HTTR hydrogen production system is first connected to a nuclear reactor in the world; hence a permeation test of hydrogen isotopes through heat exchanger is carried out to obtain detailed data for safety review and development of analytical codes. This paper also describes an overview of the hydrogen permeation test and permeability of hydrogen and deuterium of Hastelloy XR.

Strength Evaluation of A Failed A53B Carbon Steel Pipe with Small Punch Test and Finite Element Analysis (소형펀치시험과 유한요소해석을 이용한 A53B 탄소강 파손 배관의 강도 평가)

  • Lee, Joon-Won;Kim, Maan-Won;Shin, Kyu-In;Park, Jai-Hak
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.1
    • /
    • pp.1-11
    • /
    • 2008
  • In this study, small punch test and tensile test were performed with specimens directly machined from an ASTM A53 grade B carbon steel pipe at which an explosion accident was occurred in the Heavy Oil Unit. Main damage mechanism of the pipe was known as a high temperature hydrogen attack(HTHA). Effects of HTHA on the mechanical strength change of the A53B steel were studied in detail. Small punch test results have showed that maximum reaction forces, SP energy and ductility were decreased at hydrogen attacked part of the pipe compared with sound part of the pipe. Yield strength and tensile ultimate strength were calculated with the obtained small punch test curve results using different methods and compared the estimation methods. Small punch test simulation has been also performed with the finite element method and then mechanical strength, equivalent strain and fracture toughness were calculated with the obtained numerical analysis results. It was shown that the fracture toughness data calculated from small punch equivalent energy obtained by the finite element analysis for SP test was very low at the hydrogen attacked part.

The Study on NOx Emission for Hydrogen Fueled Engine(2) (수소기관에서 NOx 특성에 관한 연구(2))

  • Choi, G.H.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.11 no.1
    • /
    • pp.1-9
    • /
    • 2000
  • The goals of this research are to understand the $NO_x$ emission in direct injected diesel engine with premixed hydrogen fuel. Hydrogen fuel was supplied into the test engine through the intake pipe. Amount of hydrogen-supplemented fuel was 70 percent basis heating value of the total fuel. The effects of exhaust gas recirculation(EGR) on $NO_x$ emission were studied. The exhaust gas was recirculated to the intake manifold and the amount of exhaust gas was controlled by the valve. The major conclusions of this work include: (i) the tested engine was run without backfire under 70 percent hydrogen fuel supplemented; (ii) the peak cylinder pressure was decreased with increase of EGR ratio due to the decrease of oxygen concentration in an intake pipe; and (iii) $NO_x$ emission was decreased by 77% with 30% EGR ratio. Therefore, it may be concluded that EGR is effective method to lower $NO_x$ emission in hydrogen fueled diesel engine.

  • PDF