• Title/Summary/Keyword: Hydrogen peroxide generation

Search Result 167, Processing Time 0.051 seconds

Hydrogen Peroxide Generation of DSA for Electro-Fenton Reaction and Removal of Rhodamine B (Electro-Fenton 반응을 위한 불용성 전극의 과산화수소 생성과 Rhodamine B의 제거)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.2
    • /
    • pp.175-182
    • /
    • 2008
  • This study investigates the optimal conditions for electrogenerated hydrogen peroxide production and the application of the electro-Fenton process using DSA electrodes. The influences of parameters for the hydrogen peroxide generation such as electrode materials, electrolyte concentration, current, pH, air flow rate and electrode distance were investigated using a laboratory scale batch reactor. The relative performance for hydrogen peroxide generation of each of the six electrodes is : Ru-Sn-Ti > Ru-Sn-Sb > Ru > Ir > Pt > Sn-Sb. Optimum NaCl dosage, current and air flow rate were 2.0 g/l, 12.5 A and 2 l/min, respectively. When the pH is low, hydrogen peroxide concentration was high. Electrode distance dos not effect to a hydrogen peroxide generation. A complete color removal was obtained for RhB (200 mg/l) at the 8 min mark of the electro-Fenton process under optimum operation conditions of $Fe^{2+}$ 0.105 g/l and 5.0 A. The electro-Fenton process increased initial reaction and decreased final reaction time. However the effect was not high.

Resistant Activity to Hydrogen Peroxide of Lactobacillus spp., Bifidobacterium spp., Bacillus coagulans and Hydrogen Peroxide Generation Capability of Lactobacillus spp. (Lactobacillus spp., Bifidobacterium spp. 및 Bacillus coagulans의 과산화수소 저항성과 과산화수소 생성 능력)

  • Lee, Jong-Hyeok;Yoon, Yeong-Ho
    • Journal of Dairy Science and Biotechnology
    • /
    • v.22 no.2
    • /
    • pp.107-112
    • /
    • 2004
  • Studies on the resistance of Lactobacillus ssp., Bifidobacterium spp. and Bacillus coagulans to hydrogen peroxide were conducted by determination of the viable cells after the test cells in 2mM hydrogen peroxide solution for a predetermined time; L. acidophilus CU4111 and L. casei CU4114 were most resistant to the hydrogen peroxide among the fifteen test lactobacilli strains, whereas L. brevis Cu4206 was the strain which was the most susceptible to hydrogen peroxide. Bifidobacterium longum Cu4131 was one of the resistant strains. A prominant tendency found out that Bacillus coagulans possessed a strong resistance to hydrogen peroxide. The results of level of hydrogen peroxide determination in the cell extracts showed all the test strains contained hydrogen peroxide in the cytoplasm, the amount varied depending on the strain and species of lactic acid bacteria. Bifidobacterium bifidum CU 4134 and L. casei CU 4114 were potent hydrogen peroxide producer strain.

  • PDF

Feasibility of Energy Generation from Chemical Reaction between Hydrogen Peroxide/Hydride (고농도 과산화수소와 수소화물의 지속적인 반응에 대한 연구)

  • SEO, SEONGHYEON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.3
    • /
    • pp.271-277
    • /
    • 2015
  • The present paper discusses about noble idea on various reactions including hydrides, hydrogen peroxide and nano-sized metal powders, which do not emit toxic materials as well as carbon dioxide. Here in this paper, the very first-ever concept that heat energy can be generated from the direct reaction between sodium borohydride and hydrogen peroxide is presented. Sodium hydride as fuel can supply hydrogen reacting with oxygen provided by the decomposition of hydrogen peroxide solution. Solid sodium borohydride can be resolved in water and treated as liquid solution for the easy handling and the practical usage although its solid powder can be directly mixed with hydrogen peroxide for the higher reactivity. The thermodynamic analysis was conducted to estimate adiabatic reaction temperatures from these materials. The preliminary experiment on the reactions conducted using sodium borohydride powder and hydrogen peroxide water solution revealed that the self-propagating reaction can occur and that its reactivity increases with an increase of hydrogen peroxide concentration.

The Comparative Study of Different Membranes for Electrolytic Cell for the Hydrogen Peroxide Generation (과산화수소 발생을 위한 전해셀용 양성자 교환 막의 비교)

  • You, Sun-Kyung;Kim, Han-Joo;Kim, Tae-Il;Tsurtsumia, Gigla;Park, Soo-Gil
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.4
    • /
    • pp.235-238
    • /
    • 2007
  • There is great interest in the applicability of generated hydrogen peroxide to a variety of industrial processes, usually involving oxidation of organics. Hydrogen peroxide is now employed for the bleaching as well as mechanical and chemical treatment in the pulp and paper industries. It addition, it is considered as an agent to displace the traditional alkaline treatments with chlorine-based chemicals. This paper reports a comparative study of $H_2O_2$ electogeneration on gas-diffusion electrode in divided cell with several $Nafion^{(R)}$ proton-exchange membranes, Russian cation-exchange membrane MK-40 and SPEEK membrane. The influence of different PEMs on electro-chemical cell voltage, current efficiency and energy consumption of hydrogen peroxide generation has been studied.

A Component from Cornus officinalis Enhances Hydrogen Peroxide Generation from Macrophages (산수유의 반응성 산소종 생성 증진 성분)

  • Kim, Dae-Keun;Kwak, Jong-Hwan;Ryu, Jung-Hee;Kwon, Hak-Chul;Song, Ki-Won;Kang, Sam-Sik;Lee, Sung-Haeng;Lee, Eun-Ah;Kwon, Nyoyn-Soo;Lee, Kang-Ro;Zee, Ok-Pyo
    • Korean Journal of Pharmacognosy
    • /
    • v.27 no.2
    • /
    • pp.101-104
    • /
    • 1996
  • Hydrogen peroxide is one of major chemicals mediating antitumor and antimicrobial activities of macrophages. We searched natural products enhancing hydrogen peroxide generation from murine macrophage-like cell line J774. Among 21 methanol extracts of Korean medicinal plants, the extract from Cornus officinalis was the most effective. The active component from the fractions was searched by activity guided fractionation, and identified as ursolic acid by spectral data.

  • PDF

One-pot synthesis of PdAu bimetallic composite nanoparticles and their catalytic activities for hydrogen peroxide generation

  • Xiao, Xiangyun;Kang, Tae-Uook;Nam, Hyobin;Bhang, Suk Ho;Lee, Seung Yong;Ahn, Jae-Pyung;Yu, Taekyung
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.12
    • /
    • pp.2379-2383
    • /
    • 2018
  • We report a facile one-pot aqueous-phase synthesis of PdAu bimetallic nanoparticles with different Pd/Au ratio. The synthesis was conducted by co-reduction of Pd and Au precursor using ascorbic acid as a reducing agent and in the presence of polyallylamine hydrochloride (PAH). By high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) and energy-dispersive X-ray spectrometry (EDS) analyses, we found that the synthesized nanoparticles had an onion-like core/shell/shell/shell structure with Au-rich core, Pd-rich shell, Au-rich shell, and Pd shell, respectively. We also investigated the catalytic performance of the synthesized PdAu nanoparticles toward hydrogen peroxide generation reaction.

Preliminary Study on Reaction Mechanism for Energy Generation using Hydride and Hydrogen Peroxide (수소화물과 과산화수소를 적용한 에너지 생성 메커니즘 연구)

  • Seo, Seong-Hyeon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.300-303
    • /
    • 2012
  • Global warming has been a serious problem due to excessive emissions of carbon dioxide from the increase of energy consumption. The present study investigates an energy generation mechanism that does not produce carbon dioxide and oxides of nitrogen. A reaction mechanism including sodium borohydride and hydrogen peroxide has been introduced and as a result, thermal energy can be generated from combustion of hydrogen with oxygen. Sodium borohydride dissolved in water reacting with liquid hydrogen peroxide may reveal maximum adiabatic reaction temperature of 1795 K at a mixture ratio of 0.89.

  • PDF

Study on Possibility of Diesel Reforming with Hydrogen Peroxide in Low-Oxygen Environments (산소희박환경에서 과산화수소를 이용한 디젤개질 가능성 탐구)

  • Han, Gwangwoo;Bae, Minseok;Bae, Joongmyeon
    • Korean Chemical Engineering Research
    • /
    • v.53 no.5
    • /
    • pp.584-589
    • /
    • 2015
  • For effective power generation with fuel cells in low-oxygen environments such as submarines and unmanned underwater vehicles, a hydrogen source which has a high hydrogen storage density is required. Diesel fuel is easy to storage and supply due to its liquid phase and it has a high density per unit volume and unit mass of hydrogen that required for driving the fuel cells. In this paper, diesel fuel was selected as a hydrogen source for driving the fuel cell in oxygen lean environments. In addition, the aqueous hydrogen peroxide solution was suggested as an alternative oxidant for hydrogen production through the diesel reforming reaction because of its high oxygen density and liquid phase which makes it easy to storage. In order to determine the characteristics of hydrogen peroxide as an oxidant of diesel reforming, comparative experiments were conducted and it was found that hydrogen peroxide solution has the same characteristics when reformed with oxidants of both steam and oxygen. Moreover, the commercial diesel reforming performances were analyzed according to the reaction temperature and concentration of aqueous hydrogen peroxide solution. Then, through the 49 hours accelerated degradation tests, the possibility of hydrogen production via diesel and aqueous hydrogen peroxide solution was confirmed.

Dye Decomposition in Seawater using Electro-Fenton Reaction (전기-펜톤 반응을 이용한 해수 중의 염료 분해)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.29 no.4
    • /
    • pp.383-393
    • /
    • 2020
  • To increase electrolysis performance, the applicability of seawater to the iron-fed electro-Fenton process was considered. Three kinds of graphite electrodes (activated carbon fiber-ACF, carbon felt, graphite) and dimensionally stable anode (DSA) electrode were used to select a cathode having excellent hydrogen peroxide generation and organic decomposition ability. The concentration of hydrogen peroxide produced by ACF was 11.2 mg/L and those of DSA, graphite, and carbon felt cathodes were 12.9 ~ 13.9 mg/L. In consideration of durability, the DSA electrode was selected as the cathode. The optimum current density was found to be 0.11 A/㎠, the optimal Fe2+ dose was 10 mg/L, and the optimal ratio of Fe2+ dose and hydrogen peroxide was determined to be 1:1. The optimum air supply for hydrogen peroxide production and Rhodamine B (RhB) degradation was determined to be 1 L/min. The electro-Fenton process of adding iron salt to the electrolysis reaction may be shown to be more advantageous for RhB degradation than when using iron electrode to produce hydrogen peroxide and iron ion, or electro-Fenton reaction with DSA electrode after generating iron ions using an iron electrode.

Aromatization of 1,3,5-Trisubstituted of 4,5-Dihydro-1H-Pyrazoles by In-Situ Generation of I+ from Hydrogen Peroxide/Acids/Iodide Potassium or Sodium Systems

  • Maleki, Behrooz;Veisi, Hojat
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4366-4370
    • /
    • 2011
  • A simple, green and cost-effective protocol was used for the aromatization of 1,3,5-trisubstituted-2-pyrazolines to the corresponding pyrazoles by in situ generation of iodine ($I^+$) from $H_2O_2$/AcOH or SSA or oxalic acid /KI or NaI system under thermal condition with moderate to good yields.