• Title/Summary/Keyword: Hydrogen peroxide($H_{2}O_{2}$)

Search Result 937, Processing Time 0.027 seconds

A Study on the Dimensional Stability of Archaeological Waterlogged Salix koreensis Andersson Treated with Recycled PEG (재활용 PEG를 이용한 수침 고버드나무의 치수안정화 연구)

  • Yang, Seok-Jin;Lee, Soo;Kim, Jong-Hwa
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.635-641
    • /
    • 2014
  • Archaeological waterlogged woods require a process of dimensional stabilization for their conservation. PEG is the most widely used in the conservation of archaeological waterlogged wood. One of the easiest and commonly used methods is the impregnation of 40% polyethylene glycol followed by vacuum freeze drying. However, the waste fluid produced from the PEG treatment is black in color and has a severe odor due to the organic matter extracted from the wood. Thus It cannot be recycled and it was just thrown out. Color of waste fluid can be decolored with oxidation reaction by hydrogen peroxide. Properties of PEG before and after preservation treatment, and after oxidation with $H_2O_2$ were not changed. Dimensional stability of archaeological waterlogged Salix koreensis Andersson was studied with pure or recycled PEG. The ratio of impregnation solutions were 10:0, 7:3, 5:5, 3:7, 0:10 (pure PEG : recycled PEG). Impregnation process was carried out by putting the wood specimens 10% PEG solution for 5days, 20% for 5 days, 30% for 5 days finally 40% for 5 days. All of the specimens showed the weight change rate of 25%. SEM results provided that the dimensional change of were less than 4% PEG impregnated specimens. Comparing with pure PEG impregnation system, conservation precess mixed PEG also showed no significant changes. Conclusively, the recycled PEG can be used for archeological waterlogged wood conservation precess.

Antioxidant and α-Glucosidase Inhibition Activity of Solvent Fractions from Prunus mume Ethanol Extract (매실 순차분획물의 용매별 항산화 활성 및 α-glucosidase 억제 효과)

  • Kim, Jeong-Ho;Cho, Hyun-Dong;Won, Yeong-Seon;Park, Wool-Lim;Min, Hye-Ji;Han, Sim-Hee;Moon, Kwang-Deog;Seo, Kwon-Il
    • Journal of Life Science
    • /
    • v.29 no.10
    • /
    • pp.1111-1119
    • /
    • 2019
  • Prunus mume, known as maesil in Korea, has been widely cultivated in East Asia and used as medication and food. However, because most of the previous studies concerning P. mume had been investigated its under extract state, detailed studies are still required for its extensive utilization. In this study, we evaluated the antioxidant and ${\alpha}-glucosidase$ inhibitory activities of solvent fractions of P. mume ethanol extracts. The ethyl acetate fraction showed higher DPPH radical scavenging activity, ABTS radical scavenging activity, reducing power, and hydrogen peroxide scavenging activity than other fractions. The DPPH radical scavenging activities of ethyl acetate fraction was 67.79%; ABTS radical scavenging activity was 60.03%; reducing power ($OD_{670}$) was 1.26; and hydrogen peroxide scavenging activity was 93.18% at $500{\mu}g/ml$. Also, the ethyl acetate and methanol fraction showed effective levels of ${\alpha}-glucosidase$ inhibition activity (69.25% and 72.29% at $500{\mu}g/ml$). Total polyphenol contents and total flavonoid contents of the ethyl acetate fraction were 88.28 mg/g (gallic acid equivalent) and 70.38 mg/g (quercetin equivalent), respectively. These results suggest that the physiological activities of the ethyl acetate fraction are associated with its polyphenol and flavonoid contents. Therefore, this study can be used as basic data for developing natural antioxidants and potential functional material using P. mume.

Study of Apoptotic Effect on Hydrogen Peroxide-induced Rat PC-12 Cells by Aster tataricus Water Extract (자완 수추출물(水抽出物)이 $H_2O_2$에 의해 유도(誘導)된 PC-12 세포주(細胞株)의 세포사(細胞死)에 미치는 영향(影響))

  • Shin, Yoo-Jung;Kim, Seung-Mo;Park, Chi-Sang;Shin, Oh-Chul
    • The Journal of Korean Medicine
    • /
    • v.28 no.2 s.70
    • /
    • pp.213-223
    • /
    • 2007
  • Objective : Alzheimer's disease (AD) is a geriatric dementia that is widespread in old age. With an aging populace, AD is a looming problem in public health service. Alzheimer's disease is characterized by specific neuronal degeneration in certain areas of the brain. Mutations and abnormal expression of several genes are associated with ${\beta}-amyloid$ deposits and Alzheimer's disease; among them APP, PS1, and PS2, SOD, free radical, ROS. Methods:We studied herbal medicines that have a relationship to brain degeneration. From pre-modern times, although a variety of oriental prescriptions of Aster tataricus have been traditionally utilized for the treatment of AD, their pharmacological effects and action mechanisms have not yet been fully elucidated. Result : Based on morphological observations by phase-contrast microscope, TUNEL assay and MTT in the culture media, $H_20_2-induced$ cell death was significantly inhibited by Aticus. We examined by ROS formation, catalase activity and GSH activity. We studied the protective effect and inhibitory effects of neurotoxicity in $H_20_2-induced$ PC-12 cells by Aticus. Findings from our experiments show that Aticus inhibits apoptosis, which has neurotoxicities and cell damage in PC-12 cells. In addition, treatment with Aticus ($>25{\mu}g/ml$ for 6hrs) partially prevented $H_20_2-induced$ cytotoxicity in PC-12 cells, and induced a protective effect. Conclusion : As the result of this study, in the Aticus group, the apoptosis in the nervous system was inhibited, protected against the degeneration of PC-12 cells by $H_20_2$. Taken together, Aticus exhibited inhibition of $H_20_2-induced$ apoptotic cell death. Aticus was found to induce protective effect on GSH and catalase in PC-12 cells. Based on these findings, Aticus may be beneficial for the treatment of AD.

  • PDF

Korean Red Ginseng inhibits apoptosis in neuroblastoma cells via estrogen receptor ${\beta}$-mediated phosphatidylinositol-3 kinase/Akt signaling

  • Nguyen, Cuong Thach;Luong, Truc Thanh;Kim, Gyu-Lee;Pyo, Suhkneung;Rhee, Dong-Kwon
    • Journal of Ginseng Research
    • /
    • v.39 no.1
    • /
    • pp.69-75
    • /
    • 2015
  • Background: Ginseng has been shown to exert antistress effects both in vitro and in vivo. However, the effects of ginseng on stress in brain cells are not well understood. This study investigated how Korean Red Ginseng (KRG) controls hydrogen peroxide-induced apoptosis via regulation of phosphatidylinositol-3 kinase (PI3K)/Akt and estrogen receptor (ER)-${\beta}$ signaling. Methods: Human neuroblastoma SK-N-SH cells were pretreated with KRG and subsequently exposed to $H_2O_2$. The ability of KRG to inhibit oxidative stress-induced apoptosis was assessed in MTT cytotoxicity assays. Apoptotic protein expression was examined byWestern blot analysis. The roles of ER-${\beta}$, PI3K, and p-Akt signaling in KRG regulation of apoptosis were studied using small interfering RNAs and/or target antagonists. Results: Pretreating SK-N-SH cells with KRG decreased expression of the proapoptotic proteins p-p53 and caspase-3, but increased expression of the antiapoptotic protein BCL2. KRG pretreatment was also associated with increased ER-${\beta}$, PI3K, and p-Akt expression. Conversely, ER-${\beta}$ inhibition with small interfering RNA or inhibitor treatment increased p-p53 and caspase-3 levels, but decreased BCL2, PI3K, and p-Akt expression. Moreover, inhibition of PI3K/Akt signaling diminished p-p53 and caspase-3 levels, but increased BCL2 expression. Conclusion: Collectively, the data indicate that KRG represses oxidative stress-induced apoptosis by enhancing PI3K/Akt signaling via upregulation of ER-${\beta}$ expression.

Anti-oxidative and Anti-inflammatory Activities of Decaisnea insignis Ethanol Extract (Decaisnea insignis 에탄올 추출물의 항산화 및 항염증 활성)

  • Jin, Kyong-Suk;Lee, Ji Young;Kwon, Hyun Ju;Kim, Byung Woo
    • Journal of Life Science
    • /
    • v.24 no.9
    • /
    • pp.973-980
    • /
    • 2014
  • This study was conducted to explore new nutraceutical resources from the plant kingdom possessing biological activities. To fulfill this purpose, the anti-oxidative and anti-inflammatory activities of Decaisnea insignis ethanol extract (DIEE) were evaluated. First, DIEE possessed potent scavenging activity against 1,1-diphenyl-2-picryl hydrazyl (DPPH), similar to ascorbic acid used as a positive control. Moreover, DIEE inhibited lipopolysaccharide (LPS)- and hydrogen peroxide ($H_2O_2$)-induced reactive oxygen species (ROS) in RAW 264.7 cells. Furthermore, DIEE induced the expression of an anti-oxidative enzyme, heme oxygenase 1 (HO-1), and its upstream transcription factor, nuclear factor-E2-related factor 2 (Nrf2), in a dose-dependent manner. The modulation of the HO-1 and Nrf2 expressions might be regulated by mitogen-activated protein kinases (MAPKs) and their upstream signaling pathways. On the other hand, DIEE suppressed LPS-induced nitric oxide (NO) formation without cytotoxicity. The inhibition of the NO formation was the result of the downregulation of inducible NO synthase (iNOS) by DIEE. The suppression of NO and iNOS by DIEE might be modulated by their upstream transcription factors, nuclear factor ${\kappa}B$ ($NF-{\kappa}B$), and activator protein 1 (AP-1) pathways. Taken together, these results provide important new insights that D. insignis possesses anti-oxidative and anti-inflammatory activities. Therefore, it might be utilized as a promising material in the field of nutraceuticals.

S-Nitrosoglutathione (GSNO) Alleviates Lead Toxicity in Soybean by Modulating ROS, Antioxidants and Metal Related Transcripts

  • Methela Nusrat Jahan;Islam Mohammad Shafiqul;Da-Sol Lee;Youn-Ji Woo;Bong-Gyu Mun;Byung-Wook Yun
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2023.04a
    • /
    • pp.105-105
    • /
    • 2023
  • Heavy metals, including lead (Pb) toxicity, are increasing in soil and are considered toxic in small amounts. Pb contamination is mainly caused by industrialization - smelting, mining. Agricultural practices - sewage sludge, pests and urban practices - lead paint. It can seriously damage and threaten crop growth. Pb can adversely affect plant growth and development by affecting the photosystem, cell membrane integrity, and excessive production of reactive oxygen species (ROS) such as hydrogen peroxide (H2O2)andsuperoxide(O2.-). NO is produced via enzymatic and non-enzymatic antioxidants to scavenge ROS and lipid peroxidation substrates in terms of protecting cells from oxidative damage. Thus, NO improves ion homeostasis and confers resistance to metal stress. Our results here suggest that exogenous NO may aid in better growth under lead stress. These enhancements may be aided by NO's ability in sensing, signaling and stress tolerance in plants under heavy metal stress in combination with lead stress. Our results show that GSNO has a positive effect on soybean seedling growth in response to axillary pressure and that NO supplementation helps to reduce chlorophyll maturation and relative water content in leaves and roots following strong burst under lead stress. GSNO supplementation (200 µM and 100 µM) reduced compaction and approximated oxidative damage of MDA, proline and H2O2. Under plant tension, a distorted appearance was found in the relief of oxidative damage by ROS scavenging by GSNO application. In summary, modulation of these NO, PCS and prolongation of metal past reversing GSNO application confirms the detoxification of ROS induced by toxic metal rates in soybean. In summary, these NO, PCS and metal traditionally sustained rates of reverse GSNO application confirm the detoxification of ROS induced by toxic metal rates in soybean.

  • PDF

Anti-oxidative and Anti-inflammatory Activities of Desmodium heterocarpon Extract in RAW 264.7 Cells (RAW 264.7 세포에서 Desmodium heterocarpon 추출물의 항산화 및 항염증 활성)

  • Lee, Su Hyeon;Jin, Kyong-Suk;Son, Yu Ri;Kwon, Hyun Ju;Kim, Byung Woo
    • Journal of Life Science
    • /
    • v.28 no.2
    • /
    • pp.216-222
    • /
    • 2018
  • Desmodium heterocarpon is one of vines belongs to Fabaceae family, mainly distributed in Asian countries such as Korea and Japan. This study was conducted to explore new nutraceutical resources from the plant kingdom possessing biological activities. To fulfill this purpose, the anti-oxidative and anti-inflammatory activities of D. heterocarpon ethanol extract (DHEE) were evaluated by 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging activity assay, reactive oxygen species (ROS) scavenging activity assay, nitric oxide (NO) inhibitory activity assay, and the analysis of related protein expressions by Western blot hybridization. DHEE exhibited potent anti-oxidative activity as confirmed by DPPH radical scavenging capacity against DPPH similar with ascorbic acid, a well-known anti-oxidative agent, used as a positive control. DHEE also effectively suppressed hydrogen peroxide ($H_2O_2$)-induced ROS on RAW 264.7 murine macrophage cells. Furthermore, DHEE induced the expression of the anti-oxidative enzyme heme oxygenase 1 (HO-1), and its upstream transcription factor, nuclear factor-E2-related factor 2 (Nrf2) as a dose dependent manner. DHEE inhibited lipopolysaccharide (LPS) induced nitric oxide (NO) formation as a consequence of inducible NO synthase (iNOS) down regulation. Taken together, these results suggest that DHEE has anti-oxidative and anti-inflammatory activities and thus appears to be useful sources as potential anti-oxidant and anti-inflammatory agents. The identification of active compounds that confer biological activities of DHEE might be needed.

Anti-oxidative Activity of Five Plant Extracts including Apios fortune, Colubrina arborescens, Croton caudatus, Osmanthus matsumuranus and Schima noronhae (Apios fortunei, Colubrina arborescens, Croton caudatus, Osmanthus matsumuranus, 그리고 Schima noronhae를 포함하는 5종 식물 추출물의 항산화 활성)

  • Lee, Su Hyeon;Jin, Kyong-Suk;Kwon, Hyun Ju;Kim, Byung Woo
    • Journal of Life Science
    • /
    • v.28 no.9
    • /
    • pp.1092-1099
    • /
    • 2018
  • This study was orchestrated with the purpose of uncovering new nutraceutical resources possessing biological activities in the plant kingdom. To fulfill our objective, we analyzed several plant extracts and selected five species possessing powerful anti-oxidative activity. The anti-oxidative effect of these five plants, Apios fortunei Maxim., Colubrina arborescens Sarg., Croton caudatus Geiseler, Osmanthus matsumuranus Hayata and Schima noronhae Reinw. ethanol extracts were then evaluated by using in vitro assay, cell model system, and Western blot analysis of target proteins. As the results, all of them possessed the potent scavenging activity against 1,1-diphenyl-2-picryl hydrazyl (DPPH), similar with that of ascorbic acid, used as a common positive control. Moreover, they strongly inhibited hydrogen peroxide ($H_2O_2$)-induced reactive oxygen species (ROS), in a dose-dependent manner, in RAW 264.7 murine macrophage cells. Furthermore, they induced the protein expression of an anti-oxidative enzyme, heme oxygenase 1 (HO-1), and its upstream transcription factor, nuclear factor-E2-related factor 2 (Nrf2). Taken together, these results indicate that these five plants possess potent anti-oxidative activity and thus appear to be useful sources as potential anti-oxidant agents. Therefore, they might be utilized as promising materials in the field of nutraceuticals.

Antioxidative and Anti-inflammatory Activities of Ardisia arborescens Ethanol Extract (Ardisia arborescens 에탄올 추출물의 항산화 및 항염증 활성)

  • Jin, Kyong-Suk;Lee, Ji Young;Kwon, Hyun Ju;Kim, Byung Woo
    • Journal of Life Science
    • /
    • v.24 no.7
    • /
    • pp.713-720
    • /
    • 2014
  • In this study, the antioxidative and anti-inflammatory activities of Ardisia arborescens ethanol extract (AAEE) were evaluated using in vitro assays and a cell culture model system. AAEE exhibited potent scavenging activity against 1,1-diphenyl-2-picryl hydrazyl (DPPH), similar to ascorbic acid, which was used as a positive control. Moreover, AAEE effectively suppressed lipopolysaccharide (LPS)- and hydrogen peroxide ($H_2O_2$)-induced reactive oxygen species (ROS) in RAW 264.7 cells. Furthermore, AAEE induced the expression of antioxidative enzymes, heme oxygenase 1 (HO-1), and thioredoxin reductase 1 (TrxR1), in addition to their upstream transcription factor, nuclear factor-E2-related factor 2 (Nrf2), in a dose-dependent manner. The upstream signaling pathways of mitogen-activated protein kinases (MAPKs) might regulate the modulation of HO-1, TrxR1, and Nrf2 expression. On the other hand, AAEE inhibited LPS-induced nitric oxide (NO) formation, without cytotoxicity. Suppression of NO formation was the result of AEEE-induced down-regulation of inducible NO synthase (iNOS). The suppression of NO and iNOS by AAEE might be modulated by their upstream transcription factor, nuclear factor (NF)-${\kappa}B$, and activator protein (AP)-1 pathways. Taken together, these results provide important new insights into the antioxidative and anti-inflammatory activities of A. arborescens. AAAEE might represent a promising material in the field of nutraceuticals.

Effect of the Evaporating Extract from Liquor of Fermentation Using Mycelium of Phellinus linteus on the Expression of Inflammatory Proteins and the Generation of Reactive Oxygen Species (상황버섯 균사체를 이용한 발효주의 추출물이 염증관련 단백질의 발현과 세포내 활성산소 생성에 미치는 영향)

  • Lee Jun Hyuk;Choi Yung Hyun;Lee Yong Tae;Choi Sung Hee;Chung Kyung Tae;Jeong Young Kee;Choi Byung Tae
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.6
    • /
    • pp.1825-1831
    • /
    • 2004
  • Phellinus linteus is known as a medicinal mushroom, which has the pharmaceutical activity on tumors and inflammatory diseases in traditional Oriental medicine. However, despite extensive pharmacological studies on P. linteus, the liquor of fermentation using mycelium of P. linteus(LFMP) has not been investigated. In the present study, it was examined the effect of the evaporating extract from LFMP(E-LFMP) on the expression of inflammatory proteins and the generation of reactive oxygen species in human hepatocarcinoma HepG2 cells. E-LFMP inhibited acetaldehyde-induced morphological change in HepG2 cells. Also, E-LFMP inhibits expression of inflammatory proteins including cyclooxygenase(COX)-1 and COX-2 through suppressing nuclear translocation of nuclear factor κB(NF-κB) and degradation of inhibitory κBα(IκBα). In addition, E-LFMP inhibits generation of reactive oxygen species(ROS) by hydrogen peroxide(H₂O₂) in HepG2 cells. These results suggest that LFMP has the pharmaceutical, especially anti-inflammatory, activity similar to P. linteus mushroom.