• Title/Summary/Keyword: Hydrogen peroxide($H_{2}O_{2}$)

Search Result 937, Processing Time 0.045 seconds

A Study on the Degradation Characteristics of 1,4-dioxane at Different Initial $H_2O_2$ Concentration with Advanced Oxidation Process using Ozone and Hydrogen Peroxide ($O_3/H_2O_2$를 이용한 고급산화공정에서 초기 $H_2O_2$ 농도에 따른 1,4-dioxane의 제거 특성 연구)

  • Park, Jin-Do;Suh, Jung-Ho;Lee, Hak-Sung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.10
    • /
    • pp.1108-1113
    • /
    • 2005
  • Advanced oxidation process involving $O_3/H_2O_2$ was used to eliminate 1,4-dioxane and to enhance the biodegradability of dioxane-contaminated water. Oxidation process was carried out in a bubble column reactor under different pH and $H_2O_2$ concentrations. The removal efficiencies of 1,4-dioxane were investigated at hydrogen peroxide concentration between 40 and 120 mg/L. At the same pH, removal efficiencies of 1,4-dioxane increased with increasing initial $H_2O_2$ concentration. There was a linear relationship between initial concentration of $H_2O_2$ and the amount of consumed $O_3$. It was observed that the high $H_2O_2$ concentration accelerated the generation of hydroperoxy ions(${HO_2}^-$) and hydroxyl radicals($OH{\cdot}$). Hydrogen peroxide enhanced the decomposition of 1,4-dioxane and the biodegradability of the solution.

Characteristics of Cyanide Decomposition by Hydrogen Peroxide Reduction (과산화수소에 의한 시안의 분해특성)

  • 이진영;윤호성;김철주;김성돈;김준수
    • Resources Recycling
    • /
    • v.11 no.2
    • /
    • pp.3-13
    • /
    • 2002
  • The characteristics of cyanide decomposition in aqueous phase by hydrogen peroxide have been explored in an effort to develop a process to recycle waste water. The self-decomposition of $H_2O$$_2$at pH 10 or below was minimal even in 90 min., with keeping about 90% of $H_2O$$_2$undissociated. On the contrary, at pH 12 only 9% of it remained during the same time. In the presence of copper catalyst at 5 g Cu/L, complete decomposition of $H_2$O$_2$was accomplished at pH 12 even in a shorter time of 40 min. The volatility of free cyanide was decisively dependent on the solution pH: the majority of free cyanide was volatilized at pH 8 or below, however, only 10% of it was volatilized at pH 10 or above. In non-catalytic cyanide decomposition, the free cyanide removal was incomplete in 300 min. even in an excessive addition of $H_2$$O_2$at a $H_2$$O_2$/CN molar ratio of 4, with leaving behind about 8% of free cyanide. On the other hand, in the presence of copper catalyst at a Cu/CN molar ratio of 0.2, the free cyanide was mostly decomposed in only 16 min. at a reducedH202/CN molar ratio of 2. Ihe efnciency of HBO2 in cyanide decomposition decreased with increasing addition of H2O2 since the seu-decomposition rate of $H_2$$O_2$increased. At the optimum $H_2$$O_2$/mo1ar ratio 0.2 of and Cu/CN molar ratio of 0.05, the free cyanide could be completely decomposed in 70 min., having a self-decomposition rate of 22 mM/min and a H$_2$$O_2$ efficiency of 57%.

Neuroprotective effect of Aster yomena (Kitam.) Honda against hydrogen peroxide-induced oxidative stress in SH-SY5Y cells

  • Kim, Min Jeong;Kim, Ji Hyun;Lee, Sanghyun;Cho, Eun Ju;Kim, Hyun Young
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.3
    • /
    • pp.283-290
    • /
    • 2020
  • Oxidative stress is one of the contributors of neurodegenerative disorders including Alzheimer's disease. According to previous studies, Aster yomena (Kitam.) Honda (AY) possesses variable pharmacological activities including anti-coagulant and anti-obesity effect. In this study, we aimed to determine the neuroprotective effect of ethyl acetate fraction from Aster yomena (Kitam.) Honda (EFAY) against oxidative stress. Therefore, we carried out 3-(4,5-dimethylthiazol-2-yl)-2,3-diphenyl tetrazolium bromide, lactate dehydrogenase (LDH), and 2',7'-dichlorofluorescin diacetate assays in SH-SY5Y neuronal cells treated with hydrogen peroxide (H2O2). H2O2-treated control cells exhibited reduced viability of cells, and increased LDH release and reactive oxygen species (ROS) production compared to normal cells. However, treatment with EFAY restored the cell viability and inhibited LDH release and ROS production. To investigate the underlying mechanisms by which EFAY attenuated neuronal oxidative damage, we measured protein expressions using Western blot analysis. Consequently, it was observed that EFAY down-regulated cyclooxygenase-2 and interleukin-1β protein expressions in H2O2-treated SH-SY5Y cells that mediated inflammatory reaction. In addition, apoptosis-related proteins including B-cell lymphoma-2-associated X protein/B-cell lymphoma-2 ratio, cleaved caspase-9, and cleaved-poly (ADP-ribose) polymerase protein expressions were suppressed when H2O2-treated cells were exposed to EFAY. Our results indicate that EFAY ameliorated H2O2-induced neuronal damage by regulating inflammation and apoptosis. Altogether, AY could be potential therapeutic agent for neurodegenerative diseases.

Effect of Antioxidant of Citri Reticulatae Pericarpium on Cytotoxicity of Oxygen Free Radicals in Cultured NIH3T3 Fibroblast (배양섬유모세포에서 산소유리기의 세포독성에 대한 진피의 항산화효과에 관한 연구)

  • Oh, Yong-Leol
    • The Korea Journal of Herbology
    • /
    • v.21 no.4
    • /
    • pp.143-148
    • /
    • 2006
  • Objectives : It is demonstrated that oxygen free radicals have cytotoxic effect on NIH3T3 fibroblast cells. Recently, many of herb extracts have an effect of antioxidant in oxygen free radical-induced cytotoxicity. But, the toxic mechanism of oxygen free radical is left unknown. The purpose of this study was to examine the cytotoxicity of hydrogen peroxide ($H_2O_2$) and antioxidant effect of Citri reticulatae pericarpium (CRP) on NIH3T3 fibroblasts. Methods : The cytotoxicy was measured by cell viability by XTT assay in NIH3T3 fibroblasts. XTT assay is regarded as a very sensitive screening method for the determination of the cell viability on various chemicals. Results : In this study, H2O2 decreased cell viability according to the dose- and time dependent manners after NIH3T3 fibroblasts were treated with various concentrations of H2O2 for 4 hours. And also, CRP showed the effect of antioxidant on $H_2O_2-induced $ cytotoxicity in cultured NIH3T3 fibroblasts. Conclusion : These results suggest that $H_2O_2$ has highly cytotoxic effect on cultured NIH3T3 fibroblasts by the decrease of cell viavility, and the herb extract such as CRP was showed the effect of antioxidant on $H_2O_2-induced$ cytotoxicity in these cultures.

  • PDF

Effect of Water Extract from Artemisiae Argi Folium on Hepatotoxicity Caused by Acetaminophen and Acetaldehyde (Acetaminophen과 Acetaldehyde로 유발된 간세포독성에 대한 애엽 물추출물의 영향)

  • Park, Wan-Su
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.5
    • /
    • pp.1210-1214
    • /
    • 2008
  • The purpose of this study is to investigate the effect of water extract from Artemisiae Argi Folium (WAAF) on hepatotoxicity caused by acetaminophen (AAP) and acetaldehyde which are regarded as hepatotoxin. Artemisiae Argi Folium was known to have the antibacterial, immune-enhancing, and anticoagulative properties. In Korean Medicine, Artemisiae Argi Folium is supposed to be related with 'liver meridian' according to traditional medical theory. AAP and acetaldehyde reduce the intracellular production of hydrogen peroxide ($H_2O_2$) and nitric oxide (NO) production of human hepatocyte HepG2. The intracellular production of hydrogen peroxide ($H_2O_2$) was measured by dihydrorhodamine 123 (DHR) assay. NO production was measured with Griess test. WAAF increased the production of $H_2O_2$ and NO reduced by AAP and acetaldehyde in HepG2 cells. Therefore, It could be suggested that WAAF has the hepatoprotective activity against AAP and acetaldehyde.

Investigation of the Susceptibility of Arctic Arthrobacter sp. PAMC 25486 to Mutagens (극지미생물 Arthrobacter sp. PAMC 25486의 돌연변이 유발 물질에 대한 감수성 평가)

  • Kim, Sang-geun;Choi, Jong-il;Han, Se Jong
    • Journal of Radiation Industry
    • /
    • v.8 no.2
    • /
    • pp.105-109
    • /
    • 2014
  • This study was conducted to investigate the sensitivity of Arthrobacter sp. PAMC 25486 to various mutagens. ${\gamma}-ray$, UV-ray, Ethyl methane sulfonate (EMS) and hydrogen peroxide ($H_2O_2$) were used as mutagen, and the survival rate of Arthrobacter sp. was measured at various doses of ${\gamma}-ray$ and UV-ray, and concentrations of EMS and $H_2O_2$. Decimal reduction dose ($D_{10}$ value) of Arthrobacter sp. was determined 370 Gy for a gamma irradiation treatment, 0.019 J for a UV ray, 2.5 mM for EMS, and 230 mM for $H_2O_2$. This result will be applied for the development of superior mutant strain of Arctic bacteria producing valuable compounds.

첨가제가 이산화염소 표백에 미치는 영향

  • 윤병호;왕립군;김세종;김용식;최경화
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 1999.04a
    • /
    • pp.84-88
    • /
    • 1999
  • In chlorine dioxide delignigication or bleaching, chlorate is mainly formed by the reaction between chlorite and hypochlorous acid, thus scavengers of chlorine or hypochlorous acid can be used to reduce the formation of chlorate which is unfavorable to environment. In this study, additives such as sulfamic acid, DMSO, hydrogen peroxide, or sodium chlorite was added to chlorine solution or pure $ClO_2$ solution to check their reactivity with $Cl_2$ and $ClO_2$. These additives were also added directly into general $ClO_2$ solution which contained certain amount of chlorine, then the additive-treated $ClO_2$ solution were used in bleaching stages. The aim of this procedure was to remove the original amount of chlorine that was thought to be possibly the main reason for the formation of chlorate and AOX. The additives were found to be able to eliminate chlorine very fast and selectively, but $H_2$ $O_2$ should be used under pH4, otherwise it also reacts with $ClO_2$. After the additives reacted With $Cl_2$, DMSO turned into an inactive product $(CH_3)_2SO_2$, While Sulfamic acid turned into $HClSO_3H$ that still remained active in oxidation, and $NaClO_2$ produced $ClO_2$. The addition of $HNaClO_2$ showed significant improvement in delignification but the deeper delignification led to higher formation of chlorate. When the additive-treated chlorine dioxide solutions were used in bleaching, both sulfamic acid, DMSO, and hydrogen peroxide showed no significant changes of DE brightness and Kappa number. The formation of chlorate was reduced by addition of sulfamic acid, DMSO and hydrogen peroxide.

  • PDF

Protective role of paeoniflorin from hydrogen peroxide-mediated oxidative damage in C6 glial cells

  • Lee, Ah Young;Nam, Mi Na;Kim, Hyun Young;Cho, Eun Ju
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.2
    • /
    • pp.137-145
    • /
    • 2020
  • Oxidative stress is one of the pathogenic mechanisms of various neurodegenerative diseases, such as Alzheimer's disease. Neuroglia, the most abundant cells in the brain, is thought to play an important role in the antioxidant defense system and neuronal metabolic support against neurotoxicity and oxidative stress. We investigated the protective effect of paeoniflorin (PF) against oxidative stress in C6 glial cells. Exposure of C6 glial cells to hydrogen peroxide (H2O2, 500 μM) significantly decreased cell viability and increased amounts of lactate dehydrogenase (LDH) release, indicating H2O2-induced cellular damage. However, treatment with PF significantly attenuated H2O2-induced cell death as shown by increased cell survival and decreased LDH release. The H2O2-stimulated reactive oxygen species production was also suppressed, and it may be associated with improvement of superoxide dismutase activity by treatment with PF. In addition, an increase in ratio of Bcl-2/Bax protein expression was observed after treatment with PF. In particular, the down-stream of the apoptotic signaling pathway was inhibited in the presence of PF, mostly by reduction of cleaved-poly ADP ribose polymerase, cleaved caspase-3, and -9 protein expression. Furthermore, H2O2-induced phosphorylation of c-Jun N-terminal kinase and extracellular signal-regulated kinase 1/2 was attenuated by treatment with PF. Taken together, neuroprotective effect of PF against oxidative stress probably result from the regulation of apoptotic pathway in C6 glial cells. In conclusion, our findings suggest that PF may be a potent therapeutic agent for neurodegenerative disorders.

Effect of antioxidants on push-out bond strength of hydrogen peroxide treated glass fiber posts bonded with two types of resin cement

  • Khoroushi, Maryam;Mazaheri, Hamid;Tarighi, Pardis;Samimi, Pouran;Khalighinejad, Navid
    • Restorative Dentistry and Endodontics
    • /
    • v.39 no.4
    • /
    • pp.303-309
    • /
    • 2014
  • Objectives: Hydrogen peroxide ($H_2O_2$) surface treatment of fiber posts has been reported to increase bond strength of fiber posts to resin cements. However, residual oxygen radicals might jeopardize the bonding procedure. This study examined the effect of three antioxidant agents on the bond strength of fiber posts to conventional and self-adhesive resin cements. Materials and Methods: Post spaces were prepared in forty human maxillary second premolars. Posts were divided into five groups of 8 each: G1 (control), no pre-treatment; G2, 10% $H_2O_2$ pre-treatment; G3, G4 and G5. After $H_2O_2$ application, Hesperidin (HES), Sodium Ascorbate (SA) or Rosmarinic acid (RA) was applied on each group respectively. In each group four posts were cemented with Duo-Link conventional resin cement and the others with self-adhesive BisCem cement. Push-out test was performed and data were analyzed using 2-way ANOVA and tukey's post-hoc test (${\alpha}=0.05$). Results: There was a statistically significant interaction between the cement type and post surface treatment on push-out bond strength of fiber posts (p < 0.001, F = 16). Also it was shown that different posts' surface treatments significantly affect the push-out bond strength of fiber posts (p = 0.001). $H_2O_2$ treated posts (G2) and control posts (G1) cemented with Duo-link showed the highest ($15.96{\pm}5.07MPa$) and lowest bond strengths ($6.79{\pm}3.94$) respectively. Conclusions: It was concluded that $H_2O_2$ surface treatment might enhance the bond strength of fiber posts cemented with conventional resin cements. The effect of antioxidants as post's surface treatment agents depends on the characteristics of resin cements used for bonding procedure.

Protective Role of Corticosterone against Hydrogen Peroxide-Induced Neuronal Cell Death in SH-SY5Y Cells

  • Lee, Chan;Jang, Jung-Hee;Park, Gyu Hwan
    • Biomolecules & Therapeutics
    • /
    • v.30 no.6
    • /
    • pp.570-575
    • /
    • 2022
  • Stress breaks body balance, which can cause diverse physiological disorders and worsen preexisting diseases. However, recent studies have reported that controllable stress and overcoming from stress reinforce resilience to resist against more intense stress afterwards. In this study, we investigated the protective effect of corticosterone (CORT), a representative stress hormone against hydrogen peroxide (H2O2)-induced neuronal cell death and its underlying molecular mechanism in SH-SY5Y cells, a human neuroblastoma cell line. The decreased cell viability by H2O2 was effectively restored by the pretreatment with low concentration of CORT (0.03 μM for 72 h) in the cells. H2O2-increased expression of apoptotic markers such as PUMA and Bim was decreased by CORT pretreatment. Furthermore, pretreatment of CORT attenuated H2O2-mediated oxidative damages by upregulation of antioxidant enzymes via activation of nuclear factor erythroid 2-related factor 2 (Nrf2). These findings suggest that low concentration of CORT with eustressed condition enhances intracellular self-defense against H2O2-mediated oxidative cell death, suggesting a role of low concentration of CORT as one of key molecules for resilience and neuronal cell survival.