• Title/Summary/Keyword: Hydrogen oxidation

Search Result 741, Processing Time 0.02 seconds

Methanol Partial Oxidation over Commercial CuO-ZnO-Al2O3 Catalysts (CuO-ZnO-Al2O3 상업용 촉매에서의 메탄올 부분산화반응)

  • Lim, Mee-Sook;Suh, Soong-Hyuck;Ha, Ki-Ryong;Ahn, Won-Sool
    • Journal of Hydrogen and New Energy
    • /
    • v.13 no.2
    • /
    • pp.119-126
    • /
    • 2002
  • The methanol partial oxidation using commercial $CuO/ZnO/Al_2O_3$ catalysts in a plug flow reactor was studied in the temperature range of $200{\sim}250^{\circ}C$ at atmospheric pressure, It was achieved the high activities by Cu-based catalysts and the selectivity of $CO_2$/$H_2$ was 100% when $O_2$ was fully convened. The reactivity changes and their hysteresis with increasing/decreasing temperatures were observed due to the chemical state differences between the oxidation and the reduction on the Cu surface, It was suggested as the two-step reaction: the complete oxidation and the following steam reforming for methanol, which was indicated by the distributions of final products vs. the residence time. In addition, the complete oxidation step was shown to be extremely fast and the total reaction rate can be controlled by the steam reforming reaction.

Analysis on an Oxidation-Reduction Reaction of Photocatalytic Plasma Complex Module

  • KIM, Young-Do;KWON, Woo-Taeg
    • Journal of Wellbeing Management and Applied Psychology
    • /
    • v.5 no.2
    • /
    • pp.21-27
    • /
    • 2022
  • Purpose: This study is about photocatalytic technology and plasma oxidation-reduction technology. To the main cause of exposure to odor pollution, two deodorization techniques were applied to develop a module with higher removal efficiency and ozone reduction effect. Research design, data and methodology: A composite module was constructed by arranging two types of dry deodorization equipment (catalyst, adsorbent) in one module. This method was designed to increase the responsiveness to the components of complex odors and the environment. standard, unity, two types of oxidizing photo-catalyst technology and plasma dry deodorization device installed in one module to increase the potential by reduction to 76% of ozone, 100%, and 82%. Results: The complex odor disposal efficiency was 92%. Ammonia was processed with 50% hydrogen sulfide and 100% hydrogen sulfide, and ozone was 0.01ppm, achieving a target value of 0.07ppm or less. The combined odor showed a disposal efficiency of 93%, ammonia was 82% and hydrogen sulfide was 100% processed, and ozone achieved a target value of 0.07 ppm or less. Conclusions: Ozone removal efficiency was 76% by increasing Oxidation-Reduction Reaction(ORR). The H2S removal efficiency of the deodorizer was higher than that of the biofilter system currently used in sewage disposal plants.

Preferential Oxidation of CO over Alumina Supported Pt Catalysts in Hydrogen-rich Fuels (수소연료에서 알루미나 담지 백금 촉매상에서의 일산화탄소 선택적 산화 반응)

  • Choi, Jin-Soon;Suh, Dong-Jin
    • Journal of Hydrogen and New Energy
    • /
    • v.17 no.3
    • /
    • pp.241-247
    • /
    • 2006
  • The catalytic performances for CO preferential oxidation in hydrogen-rich fuels were investigated by varying the types of alumina supports, additives excluding platinum, and synthetic methods of impregnation and sol-gel synthesis. The reactions were conducted in the range of $25{\sim}300^{\circ}C$ over Pt, Co, and/or Na impregnated catalysts supported on commercial gamma-alumina, pseudoboehmite, or sol-gel derived xerogels. Catalytic activities were enhanced by cobalt addition due to strong Pt-Co interactions in the bimetallic phase. Additional sodium promoted not only the formation of the Pt-Co bimetallic interphase but also oxygen adsorption capability, giving rise to increase in the CO oxidation rate at lower temperatures. Moreover, chemical interaction between Pt and Co was considerably enhanced by sol-gel synthesis.

Effectiveness of Ni-based and Fe-based cladding alloys in delaying hydrogen generation for small modular reactors with increased accident tolerance

  • Alan Matias Avelar;Fabio de Camargo;Vanessa Sanches Pereira da Silva;Claudia Giovedi;Alfredo Abe;Marcelo Breda Mourao
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.156-168
    • /
    • 2023
  • This study investigates the high temperature oxidation behaviour of a Ni-20Cr-1.2Si (wt.%) alloy in steam from 1200 ℃ to 1350 ℃ by Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS) and X-ray Diffraction (XRD). The results demonstrate that exposed Ni-based alloy developed a thin oxide scale, consisted mainly of Cr2O3. The oxidation kinetics obtained from the experimental results was applied to evaluate the hydrogen generation considering a simplified reactor core model with different cladding alloys following an unmitigated Loss-Of-Coolant Accident (LOCA) scenario in a hypothetical Small Modular Reactor (SMR). Overall, experimental data and simulations results show that both Fe-based and Ni-based alloys may enhance cladding survivability, delaying its melting, as well as reducing hydrogen generation under accident conditions compared to Zr-based alloys. However, a substantial neutron absorption occurs when Ni-based alloys are used as cladding for current uranium-dioxide fuel systems, even when compared to Fe-based alloys.

Hydrogen Storage Characteristics Using Redox of $M/Fe_2O_3$ (M = Rh, Ce and Zr) Mixed Oxides ($M/Fe_2O_3$ (M = Rh, Ce 및 Zr) 혼합 산화물의 산화-환원을 이용한 수소 저장 특성)

  • Ryu, Jae-Chun;Lee, Dong-Hee;Kim, Young-Ho;Yang, Hyun-Soo;Park, Chu-Sik;Wang, Gab-Jin;Kim, Jong-Won
    • Journal of Hydrogen and New Energy
    • /
    • v.17 no.1
    • /
    • pp.21-30
    • /
    • 2006
  • [ $M/Fe_2O_3$ ] (M=Rh, Ce and Zr) mixed oxides were prepared using urea method to develop a medium for chemical hydrogen storage by their redox cycles. And their redox behaviors by repeated cycles were studied using temperature programmed reaction(TPR) technique. Additives such as Rh, Ce and Zr were added to iron oxides in order to lower the reaction temperature for reduction by hydrogen and re-oxidation by water-splitting. From the results, concentration of urea used as a precipitant had little effect on particle size and reduction property of iron oxide. TPR patterns of iron oxide consisted of two reduction peaks due to the course of $Fe_2O_3\;{\rightarrow}\;Fe_3O_4\;{\rightarrow}\;Fe$. The results of repeated redox tests showed that Rh added to iron oxide have an effect on lowering the re-oxidation temperature by water-splitting. Meanwhile, Ce and Zr additives played an important role in prevention of deactivation by repeated cycles. Finally, Fe-oxide(Rh, Ce, Zr) sample added with Rh, Ce and Zr showed the lowest re-oxidation temperature by water-splitting and maintained high $H_2$ recovery in spite of the repeated redox cycles. Consequently, it is expected that Fe-oxide(Rh, Ce, Zr) sample can be a feasible medium for chemical hydrogen storage using redox cycle of iron oxide.

Hydrogen Gas Production from Methane Reforming Using Oxygen Enriched Compression Ignition Engine (산소부화 압축착화기관을 이용한 메탄으로부터 수소 생산)

  • Lim, Mun-Sup;Hong, Sung-In;Hong, Myung-Seok;Chun, Young-Nam
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.5
    • /
    • pp.557-562
    • /
    • 2007
  • The purpose of this paper is to investigate the reforming characteristics and maximum operating condition for the hydrogen production by methane reforming using the compression ignition engine induced partial oxidation. An dedicated compression engine used for methane reforming was decided operating range. The partial oxidation reforming was investigated with oxygen enrichment which can improve hydrogen production, compared to general reforming. Parametric screening studies were achieved as $O_2/CH_4$ ratio, total flow rate, and intake temperature. When the variations of $O_2/CH_4$ ratio, total flow rate, and intake temperature were 1.24, 208.4 L/min, and $400^{\circ}C$, respectively, the maximum operating conditions were produced hydrogen and carbon monoxide. Under the condition mentioned above, synthetic gas were $H_2\;22.77{\sim}29.22%,\;CO\;21.11{\sim}23.59%$.

A Study on Behavior of Surface Oxidation with Steel Type (강판 종별 표면 산화 거동에 관한 연구)

  • KIM, SEULGI;LEE, KEEMAN
    • Journal of Hydrogen and New Energy
    • /
    • v.29 no.4
    • /
    • pp.378-385
    • /
    • 2018
  • An experimental study was conducted to investigate behavior of surface oxidation with steel type. The excess entalphy combustion in porous media system was applied to implement the direct radiation heating system. The surface oxidation thickness (SOT) in fuel-lean condition was thicker than the SOT in fuel-rich. Also, the SOT was increased by increasing residence time. Detailed explanations were given by SEM and EDS analysis.

UV/H2O2 Oxidation for Treatment of Organic Compound-spilled Water (UV/H2O2 산화를 활용한 유기오염물질 유출수 처리용 공정 연구)

  • Kim, Nahee;Lee, Sangbin;Park, Gunn;Park, Jae-Woo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.10
    • /
    • pp.5-12
    • /
    • 2022
  • In this study, we investigated the UV/H2O2 process to treat organic compound-spilled water. In consideration of usage and properties, benzene, toluene, phenol, and methyl ethyl ketone were selected as representative organic compounds. The selected material was first removed by natural volatilization and aeration that simulated the pretreatment of the prcoess. After that, UV/H2O2 oxidation experiments were conducted under various H2O2 concentration conditions. Benzene and toluene were mostly volatilized before reaching the oxidation process due to high volatility. Considering the volatility, oxidation experiments were performed at an initial concentration of 5 mg/L for benzene and toluene. The UV/H2O2 oxidation process achieved 100% of benzene and toluene removal after 20 minutes under all hydrogen peroxide concentration conditions. The phenol was rarely removed from the volatile experiments and oxidation tests were performed at an initial concentration of 50 mg/L. The process showed 100 % phenol removal after 30 minutes under 0.12 v/v% of hydrogen peroxide concentration condition. Methyl ethyl ketone was removed 58 % after 2 hours of volatile experiments. The process showed 99.7% Methyl ethyl ketone removal after 40 minutes under 0.08 v/v% of hydrogen peroxide concentration condition. It was confirmed that the UV/H2O2 process showed high decomposition efficiency for the four selected organic compounds, and identified the amount of hydrogen peroxide in classified organic contaminants.

A Study on Ammonia Partial Oxidation over Ru Catalyst (Ru 촉매에서의 암모니아 부분산화에 대한 연구)

  • SANGHO LEE;HYEONGJUN JANG;CHEOLWOONG PARK;SECHUL OH;SUNYOUP LEE;YONGRAE KIM
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.6
    • /
    • pp.786-794
    • /
    • 2022
  • Green ammonia is a promising renewable energy carrier. Green ammonia can be used in various energy conversion devices (e.g., engine, fuel cell, etc.). Ammonia has to be fed with hydrogen for start-up and failure protection of some energy conversion devices. Ammonia can be converted into hydrogen by decomposition and partial oxidation. Especially, partial oxidation has the advantages of fast start-up, thermally self-sustaining operation and compact size. In this paper, thermodynamics, start-up and operation characteristics of ammonia partial oxidation were investigated. O2/NH3 ratio, ammonia flow rate and catalyst volume were varied as operation parameters. In thermodynamic analysis, ammonia conversion was maximized in the O2/NH3 range from 0.10 to 0.15. Ammonia partial oxidation reactor was successfully started using 12 V glow plug. At 0.13 of O2/HN3 ratio and 10 LPM of ammonia flow rate, ammonia partial oxidation reactor showed 90% of ammonia conversion over commercial Ru catalyst. In addition, Increasing O2/NH3 ratio from 0.10 to 0.13 was more effective for high ammonia conversion than increasing catalyst volume at 0.10 of O2/NH3.

Methane Reforming Using Atmospheric Plasma Source (대기압 플라즈마를 이용한 메탄 개질 반응)

  • Lee, Dae-Hoon;Kim, Kwan-Tae;Cha, Min-Suk;Song, Young-Hoon;Kim, Dong-Hyeon
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.64-68
    • /
    • 2005
  • Methane reforming processes to obtain hydrogen were investigated experimentally by using atmospheric plasma source. Among possible reforming processes, such as a $CO_2$ reforming(dry reforming), a partial oxidation (POx), a steam reforming(SR), and a steam reforming with oxygen(SRO or auto-thermal reforming), partial oxidation and the steam reforming with oxygen were considered. We choose a rotating arc plasma as an atmospheric plasma source, since it shows the best performances in our preliminary tests in terms of a methane conversion, a hydrogen production, and a power consumption. Then, the effects of a feeding flow-rate, an electrical power input to a plasma reaction, an $O_2/C$ ratio and a steam to carbon ratio in the case of SRO on the reforming characteristics were observed systematically. As results, at a certain condition almost 100% of methane conversion was obtained and we could achieve the same hydrogen production rate by consuming a half of electrical power which was used by the best results for other researchers.

  • PDF