• 제목/요약/키워드: Hydrogen gas sensor

검색결과 141건 처리시간 0.024초

가스수집시간을 이용한 유중수소가스 측정감도 향상 연구 (Sensitivity Enhancement in Measurement of Hydrogen Gas Dissolved in Oil using Gas Collection Time)

  • 허종철;선종호;강동식;정주영;박정후
    • 전기학회논문지
    • /
    • 제58권3호
    • /
    • pp.539-543
    • /
    • 2009
  • This paper describes the sensitivity enhancement in measurement of the hydrogen gas dissolved in oil using gas collection time. On-line gas measurement is a useful for continuous monitoring of power transformer. Recently many studies on hydrogen gas measurement, due to their simplicity and low price, have been done for transformer monitoring. In measurement of the hydrogen gas in oil, the suitable sensitivity and resolution in the desired ranges of the gas concentrations are needed for the reliable monitoring of power transformers. In this study, the sensor output trends were analyzed with the hydrogen gas collection time which means the time to collect the hydrogen gas before reaction of hydrogen gas sensor. It is indicated that the sensor outputs were increased with the increase of hydrogen gas collection times at the same hydrogen gas concentrations.

Palladium-based Electrical and Optical Hydrogen Gas Sensors

  • Jinwoo, Lee;Minah, Seo
    • 센서학회지
    • /
    • 제31권6호
    • /
    • pp.397-402
    • /
    • 2022
  • In this short review, we explore the recent progress in metal-based gas-sensing techniques. The strong interaction between the metal films and hydrogen gas can be considered to play a considerably important role in the gas-sensing technique. The physical and chemical reactions in Pd-Pd hydride systems were studied in terms of the phase transition and lattice expansion of the metals. Two types of represented detection, electrical and optical, were introduced and discussed along with their advantages.

팔라듐이 코팅된 단일모드 광섬유 센서를 이용한 수소 경보 시스템 구현 (Implantation of portable hydrogen alarm system based on palladium coated single mode optical fiber sensor)

  • 문남일;양병철;김광택;김태언
    • 센서학회지
    • /
    • 제18권4호
    • /
    • pp.269-273
    • /
    • 2009
  • In this paper, a study on a portable hydrogen alarm system based on the palladium coated single mode fiber sensor has been reported. The fabricated hydrogen sensor exhibited 0.14 dB, 0.41 dB and 0.54 dB optical intensity variation when it was exposed by the nitrogen and hydrogen mixed gas containing 0.5 %, 1 % and 4 % of the hydrogen concentration, respectively. The fabricated sensor exhibited 20 second of response time and 120 second of recovery time for 4 % hydrogen containing gas. The fiber optics layout and software algorithm for detection of hydrogen leakage have been presented. The implanted portable hydrogen alarm system successfully generated an alarm signal when a 4 % hydrogen containing gas was leaked out.

가스센서를 이용한 부분방전특성에 따른 유중수소가스 측정연구 (Measurement Technology of the Dissolved Hydrogen Gas Due to Partial Discharge in Oil using Gas Sensor)

  • 허종철;선종호;강동식;정주영;추영배;박정후
    • 전기학회논문지
    • /
    • 제58권9호
    • /
    • pp.1784-1789
    • /
    • 2009
  • This paper describes the measurement technology of the dissolved hydrogen gas due to partial discharge in oil using gas sensor. For higher resolution and less error in measurement of the dissolved hydrogen gas in oil, the sensor outputs with ambient temperature which affect the sensor output characteristics should be considered. The sensor output trends with ambient temperature and the properties of the dissolved hydrogen gas in oil with partial discharge characteristic were analyzed through the test results. It was indicated that the sensor peak and the base voltage with measuring time were affected by ambient temperature and the measurement errors of the sensor output by temperature were reduced by using the difference between the peak and the base voltage rather than just the peak voltage. In addition, the hydrogen gas sensor outputs were increased with the increase of partial discharge energy.

3D 프린팅을 이용한 Pt/Carbon Nanotube composite 기반 전기화학식 황화수소 가스 센서 제작 (Fabrication of Pt/Carbon Nanotube Composite Based Electrochemical Hydrogen Sulfide Gas Sensor using 3D Printing)

  • 하윤태;권진범;최수지;정대웅
    • 센서학회지
    • /
    • 제32권5호
    • /
    • pp.290-294
    • /
    • 2023
  • Among various types of harmful gases, hydrogen sulfide is a strong toxic gas that is mainly generated during spillage and wastewater treatment at industrial sites. Hydrogen sulfide can irritate the conjunctiva even at low concentrations of less than 10 ppm, cause coughing, paralysis of smell and respiratory failure at a concentration of 100 ppm, and coma and permanent brain loss at concentrations above 1000 ppm. Therefore, rapid detection of hydrogen sulfide among harmful gases is extremely important for our safety, health, and comfortable living environment. Most hydrogen sulfide gas sensors that have been reported are electrical resistive metal oxide-based semiconductor gas sensors that are easy to manufacture and mass-produce and have the advantage of high sensitivity; however, they have low gas selectivity. In contrast, the electrochemical sensor measures the concentration of hydrogen sulfide using an electrochemical reaction between hydrogen sulfide, an electrode, and an electrolyte. Electrochemical sensors have various advantages, including sensitivity, selectivity, fast response time, and the ability to measure room temperature. However, most electrochemical hydrogen sulfide gas sensors depend on imports. Although domestic technologies and products exist, more research is required on their long-term stability and reliability. Therefore, this study includes the processes from electrode material synthesis to sensor fabrication and characteristic evaluation, and introduces the sensor structure design and material selection to improve the sensitivity and selectivity of the sensor. A sensor case was fabricated using a 3D printer, and an Ag reference electrode, and a Pt counter electrode were deposited and applied to a Polytetrafluoroethylene (PTFE) filter using PVD. The working electrode was also deposited on a PTFE filter using vacuum filtration, and an electrochemical hydrogen sulfide gas sensor capable of measuring concentrations as low as 0.6 ppm was developed.

Pt/CNT 전극 기반 전기화학식 센서의 전해질에 따른 황화수소 감지 특성 (Hydrogen Sulfide Sensing Characteristics Depending on Electrolytes of Pt/CNT Liquid Electrochemical Sensors)

  • 하윤태;권진범;최수지;백수빈;정대웅
    • 센서학회지
    • /
    • 제32권3호
    • /
    • pp.194-198
    • /
    • 2023
  • With the recent development of industrial technology, the problem of odor due to leakage of toxic gas discharged from industrial complexes is gradually increasing. Among them, hydrogen sulfide is a colorless representative odorous substance that can cause pain through irritation of the mucous membranes of the eyes and respiratory tract, and is a gas that can cause central nervous system paralysis and suffocation when exposed to high concentrations. Therefore, in order to improve the odor problem, research on a gas sensor capable of quickly and reliably detecting a leak of hydrogen sulfide is being actively conducted. A lot of research has been done on the existing metal oxide-based hydrogen sulfide gas sensor, but it has the disadvantage of requiring low selectivity and high temperature operating conditions. Therefore, in this study, a Pt/CNT-based electrochemical hydrogen sulfide gas sensor capable of detecting at low temperatures with high selectivity for hydrogen sulfide was developed. A working electrode capable of selectively detecting only hydrogen sulfide was fabricated by synthesizing Pt nanoparticles as a catalyst on functionalized CNT and applied to an electrochemical hydrogen sulfide gas sensor. It was confirmed that the manufactured Pt/CNT-based electrochemical hydrogen sulfide gas sensor has a current change of up to 100uA for hydrogen sulfide, and the both response time and recovery time were within 15 seconds.

가스의 온도 및 습도 변화에 따른 수소 센서 응답 특성에 대한 실험적 연구 (An Experimental Study on the Transient Response of Hydrogen Sensors Dependent on Gas Temperature and Humidity)

  • 김영두;정태용;신동훈;남진현;김영규;이정운
    • 한국가스학회지
    • /
    • 제13권5호
    • /
    • pp.15-19
    • /
    • 2009
  • 본 연구에서는 반도체식, 전기화학식, 접촉연소식의 가장 많이 사용되는 세 가지 수소센서 타입에 대하여 수소의 갑작스런 노출에 대한 과도응답을 실험적으로 연구하였다. 실험은 1% 농도의 수소-질소 혼합가스를 표준가스로 하여, 혼합가스의 온도 및 상대습도를 $25^{\circ}C{\sim}50^{\circ}C$ 및 50%~100%로 변화시키며 수행되었다. 혼합가스의 온도는 수소센서 출력신호의 크기에 영향을 미치며, 특히 접촉연소식 타입에 더 크게 영향을 미치는 것으로 판명되었다. 그러나, 혼합가스의 상대습도가 센서응답에 미치는 영향은 본 실험 연구에서는 나타나지 않았다. 따라서, 수소의 정확한 농도결정이 중요한 경우에는, 함께 측정된 온도에 기초하여 수소센서의 신호레벨을 보정할 필요가 있다.

  • PDF

A Study on Pattern Analysis of Odorous Substances with a Single Gas Sensor

  • Kim, Han-Soo;Choi, Il-Hwan;Kim, Sun-Tae
    • 센서학회지
    • /
    • 제25권6호
    • /
    • pp.423-430
    • /
    • 2016
  • This study used a single metal oxide semiconductor (MOS) sensor to classify the major odorous gases hydrogen sulfide ($H_2S$), ammonia ($NH_3$) and toluene ($C_6H_5CH_3$). In order to classify these odorous substances, the voltage on the MOS sensor heater was gradually reduced in 0.5 V steps 5.0 V to examine the changes to the response by the cooling effect on the sensor as the voltage decreased. The hydrogen sulfide gas showed the highest sensitivity compared to odorless air under approximately 2.5 V and the ammonia and toluene gases showed the highest sensitivity under approximately 5.0 V. In other words, the hydrogen sulfide gas reacted better in the low temperature range of the MOS sensor, and the ammonia and toluene gases reacted better in the high-temperature range. In order to analyze the response characteristics of the MOS sensor by temperature in a pattern, a two-dimensional (2D) x-y pattern analysis was introduced to clearly classify the hydrogen sulfide, ammonia, and toluene gases. The hydrogen sulfide gas was identified by a straight line with a slope of 1.73, whereas the ammonia gas had a slope of 0.05 and the toluene gas had a slope of 0.52. Therefore, the 2D x-y pattern analysis is suggested as a new way to classify these odorous substances.

플라즈마 및 니트로셀롤로우스로 처리된 유리기판을 사용한 MWCNT 스프레이 박막의 수소가스 검출특성 (Sensing Properties of Hydrogen Gas for the MWCNT Thin Film Sprayed on the Glass Substrate Cured with Plasma and Nitrocellulose)

  • 장경욱
    • 한국전기전자재료학회논문지
    • /
    • 제24권4호
    • /
    • pp.290-296
    • /
    • 2011
  • Carbon nanotubes (CNTs) have excellent electrical, chemical stability, mechanical and thermal properties. In this paper, networks of Multi-walled carbon nanotube (MWCNT) materials were investigated as a resistive gas sensors for the $H_2$ gas detection. Sensor films were fabricated by the air spray method using the multi-walled CNTs dispersion solution on the glass substrates cured with plasma and nitrocellulose. Sensors were characterized by the resistance measurements in the self-fabricated oven in order to find the optimum detection properties for the hydrogen gas molecular. The sensitivity and the linearity of the MWVNT sensors using the glass substrate cured with plasma for the $H_2$ gas concentration of 0.06~0.6 ppm are 0.013~0.097%/sec and 0.131~0.959%FS, respectively. The MWCNT film was excellent in the response for the hydrogen gas moleculars and its reaction speed was very fast, which could be using as hydrogen gas sensor. The resistance of the fabricated sensors decreases when the sensors are exposed to $H_2$ gas.

Room Temperature Hydrogen Sensor

  • Cho, Hyoung Jin;Zhang, Peng;Seal, Sudipta
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.51.3-51.3
    • /
    • 2010
  • Due to the recent public awareness of global warming and sustainable economic growth, there has been a growing interest in alternative clean energy sources. Hydrogen is considered as a clean fuel for the next generation. One of the technical challenges related to the use of hydrogen is safe monitoring of the hydrogen leak during separation, purification and transportation. For detecting various gases, chemiresistor-type gas sensors have been widely studied and used due to their well-established detection scheme and low cost. However, it is known that many of them have the limited sensitivity and slow response time, when used at low temperature conditions. In our work, a sensor based on Schottky barriers at the electrode/sensing material interface showed promising results that can be utilized for developing fast and highly sensitive gas sensors. Our hydrogen sensor was designed and fabricated based on indium oxide (In2O3)-doped tin oxide (SnO2) semiconductor nanoparticles with platinum (Pt) nanoclusters in combination with interdigitated electrodes. The sensor showed the sensitivity as high as $10^7%$ (Rair/Rgas) and the detection limit as low as 30 ppm. The sensor characteristics could be obtained via optimized materials synthesis route and sensor electrode design. Not only the contribution of electrical resistance from the film itself but also the interfacial effect was identified as an important factor that contribute significantly to the overall sensor characteristics. This promises the applicability of the developed sensor for monitoring hydrogen leak at room temperature.

  • PDF