• Title/Summary/Keyword: Hydrogen flame

Search Result 344, Processing Time 0.023 seconds

Removal of Impurities from Waste Carbon Sludge for the Recycling (폐 카본슬러지의 재활용을 위한 不純物 분리 제거)

  • 이성오;국남표;오치정;김선태;신방섭
    • Resources Recycling
    • /
    • v.10 no.3
    • /
    • pp.51-59
    • /
    • 2001
  • Impurities removal from waste carbon black was carried out to produce high-grade carbon black. A large amount of hydrophilic carbon black is produced as a byproduct of the hydrogen production process by flame decomposition of water. Due to its impurities content such as sulphur, iron, ash, etc., it can only be used as low-grade carbon or burnt out. High-grade hydrophilic carbon black is 3~5 times more expensive than oil-based carbon black because of high production cost associated with process complexly and pollutant treatment. Hydrophilic carbon is normally used for conductive materials for batteries, pigment for plastics, electric wire covering, additives for rubber, etc. In these applications, impurity content must be blow 1 fe. In this study, magnetic separation, froth flotation and ultrasonic treatment were employed to remove impurities from the low-grade hydrophilic carbon black. Results showed that the ash, iron and sulphur content of product decreased to less than 0.01 wt.%, 0.01 wt.% and 0.3 wt % respectively and the surface area of product was about 930 $m^2$/g for conductive materials.

  • PDF

Effect of Corticosteroids on Renal Excretion of Lithium (Lithium 이온의 배설에 미치는 Corticosteroid의 영향)

  • Oh, Shin-Yul;Ha, Jeoung-Hee;Lee, Kwang-Youn;Kim, Won-Joon
    • Journal of Yeungnam Medical Science
    • /
    • v.3 no.1
    • /
    • pp.229-235
    • /
    • 1986
  • Lithium salts are being used increasingly to treat patient with affective disorders, especially acute mania, or bipolar manic-depressive illness. For therapeutic effect the lithium content must be maintained at or above a particular level. Lithium poisoning due to overdosage may be seen occasionally, and its course is determined primarily by the rate of renal lithium elimination. A search is therefore indicated for procedures that could raise the lithium clearance. In a number of reports renal lithium excretion has been studied in relation to the excretion of water, sodium, potassium and hydrogen, but effects of sodium or water on the lithium excretion has not yet been clarified. Hence the present study was undertaken to investigate the effects of corticosteroid on the excretion of lithium ion. The female rat(Sprague-Dowley), weighing from 200 to 300g, was injected with 50mg/kg of lithium chloride intraperitoneally, and then injected with graded dosage of fludrocortisone and dexamethasone in each group. During the injected rats were incubated in metabolic cage, 24 hour urine of rats were collected. At 24 hours after injection, the rats were sacrificed with guillotin, the blood were collected. And then the concentratios of $Na^+$, $K^+$, $Li^+$ of collected urine and serum were checked by Flame photometer. The results are summarized as follows; 1. Fludrocortisone decreased the serum concentration of lithium and increased the urinary excretion of lithium. 2. In the group treated with low dose of dexamethasone(0.1mg/kg), the serum concentration of lithium was decreased and high dose of dexamethasone (1mg/kg) increased the urinary excretion of lithium. 3. Fludrocortisone increased the urinary $[Na^+]/[K^+]$ in serum and decreased $[Na^+]/[K^+]$ in urine, but opposite effects were occurred in dexamethasone. By above results, it may be concluded that corticosteroid increased the urinary excretion of lithium and decreased the serum concentration of lithium, but it seems to be there is no relationship between these effects of corticosteroid and of the renal $Na^+$ or $K^+$ transport.

  • PDF

Gas-Liquid Chromatographic Determination of Amino Acids in Some Korean Foods (Gas-liquid chromatography에 의한 한국(韓國) 주요식품(主要食品)의 아미노산(酸) 함량측정(含量測定))

  • Park, Yaung-Ja
    • Applied Biological Chemistry
    • /
    • v.12
    • /
    • pp.43-51
    • /
    • 1969
  • The purpose of this study was to determine protein amino acid contents of some Korean foods by gas-liquid chromatography, and to evaluate this technique as a procedure for the quantitative determination of amino acids in foods. The crude protein content of foods was also estimated from the nitrogen content. 1. Nitrogen content of each food sample was determined previously to adjust the amount of sample for GLC analysis 2. In the analysis of 17 known amino acids, a linear relationship was found between the weight of 13 amino acids of 17 amino acids, the internal standard as well as the injection volume of a mixture and the detector responses for the derivatives of the amino acids. No response for arginine, cystein, histidine, and tyrosine was observed. 3. The relative molar response (RMR) values for the 13 amino acids of standard solution relative to glutamic acid as '1.00' were obtained under normal operating conditions with a hydrogen flame ionization detector. 4. The recovery of amino acids from their mixtures with natural food materials was carried out. The recoveries were essentially quantitative except threonine and serine. An overall mean recovery of 11 amino acids was $101.4{\pm}8.4$ per cent before hydrolysis and $98.1{\pm}8.7$ per cent after hydrolysis of samples. 5. The comparative analysis of the acid hydrolysates of two food samples by gas-liquid and ion-exchange chromatographic analysis were carried out. In white-bait pemmican, only threonine and asparagine amounts by GLC analysis had similar values to those obtained by ion-exchange chromatography. The other seven amino acids gave higher values as measured by GLC than by ion-exchange. With the food sample, soybean, alanine, valine, asparagine, and glutamic acid were in good agreement in two analysis, while leucine, proline, threonine, phenylalanine, and lysine were found in slightly higher concentrations in the GLC analysis. 6. Grant variations of amino acid content were found among samples analyzed. The amino acid contents of each sample were compared with the values found in the literature.

  • PDF

Evaluation of Odors and Odorous Compounds from Liquid Animal Manure Treated with Different Methods and Their Application to Soils (액상 가축분뇨의 처리 및 토양환원에 따른 악취 및 악취물질의 평가)

  • 고한종;최홍림;김기연;이용기;김치년
    • Journal of Animal Science and Technology
    • /
    • v.48 no.3
    • /
    • pp.453-466
    • /
    • 2006
  • To comply with stricter regulations provoked by increasing odor nuisance, it is imperative to practice effective odor control for sustainable livestock production. This study was conducted to assess odor and odorous compounds emitted from liquid animal manure with different treatment methods such as Fresh Manure(without treatment, FM), Anaerobic Digestion(AD) and Thermophilic Aerobic Digestion(TAD) and their application to soil. Air samples were collected at the headspace of liquid manure, upland and paddy soil, and analyzed for odor intensity and offensiveness using an olfactometry; odor concentration index using odor analyser; nitrogen-containing compound such as ammonia(NH3) using fluorescence method; and sulfur containing compounds such as hydrogen sulfide(H2S), methyl mercaptan(MeSH), dimethyl sulfide(DMS) and dimethyl disulfide(DMDS) using gas chromatography-pulsed flame photometric detector, respectively. Odor intensity, offensiveness and concentration index from TAD liquid manure was statistically lower than those from FM and AD(p<0.01). Mean concentrations of H2S, MeSH, DMS, DMDS and NH3 were 65.93ppb, 18.55ppb, 5.26ppb, 0.33ppb and 10.57ppm for liquid manure with AD; and 5.15ppb, 0.97ppb, 0.80ppb, 0.56ppb and 1.34ppm for liquid manure with TAD, respectively. More than 60% of malodorous compounds related to nitrogen and sulfur were removed by heterotrophic microorganisms during TAD treatment. When liquid manure was applied onto upland and paddy soil, NH3 removal efficiencies ranged from 51 to 94% and 22 to 91% for AD and TAD liquid manure, respectively. The above results show that liquid manure with TAD is superior to AD and FM with respect to the odor reduction and odor problem caused by land applied liquid manure is directly related to the degree of odor generated by the manure treatment method.