• Title/Summary/Keyword: Hydrogen evolution

Search Result 350, Processing Time 0.022 seconds

Thermal Analysis of LaNi5 Hydride by Volumetric Method (부피법 자동장치를 이용한 LaNi5 수소화합물의 열분석 장치개발)

  • HAN, JEONG-SEB;KIM, SUNJUNG
    • Journal of Hydrogen and New Energy
    • /
    • v.29 no.1
    • /
    • pp.25-31
    • /
    • 2018
  • To apply Sievert's type apparatus to thermal analysis of hydrogen absorption materials, the dehydrogenation of $LaNi_5$ system was investigated. As the initial wt% of hydrogen was increased from 0.44 to 1.24 wt%, the peak temperature of evolution rate shifted to higher temperature. However, with the initial wt% of hydrogen higher than 0.95 wt%, the peak temperature of evolution rate did not change. As the heating rate was increased, the peak temperature increased; the peak temperatures for heating rates 0.5, 1.0 and 1.5 K/min were 262.2, 264.1, and 265.9 K respectively. The Sievert's type automatic apparatus can be successively applied to the thermal analysis of $LaNi_5$ hydride.

The effects of the scattering opacity and the color temperature on numerically modelling of the first peak of type IIb supernovae

  • Park, Seong Hyun;Yoon, Sung-Chul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.70.1-70.1
    • /
    • 2020
  • A type IIb supernova (SN IIb) is the result of core-collapse of a massive star which lost most of its hydrogen-rich envelope during its evolution. The pre-SN progenitor properties, such as the total radius and the mass of the hydrogen-rich envelope, can widely vary due to the mass-loss history of the progenitors. Optical light curves of SNe IIb are dominated by energy released by the hydrogen recombination and the radioactive decay of 56Ni in the early and late epochs respectively. This may result in distinctive double peaked light curves like the one observed in SN 1993J. The first peak, caused by the hydrogen recombination, can be modelled with numerical simulations providing information on the pre-SN progenitor properties. We compare two radiation-hydrodynamics codes, STELLA and SNEC, that are frequently used in SNe modelling, and investigate the effect of opacity treatment on the temporal evolution of the color temperature of SNe and eventually on the optical light curves. We find that with a proper treatment of the scattering opacity, SNe IIb models exploded from the progenitor models evolved with latest stellar evolution model hardly match the observational data. We also discuss the smaller scale features found in the models during hydrogen recombination phase.

  • PDF

Volumetric Thermal Analysis of Hydrogen Desorption from Mg-13.5wt%Ni Hydride (Mg-13.5wt%Ni 합금 수소화합물의 수소방출에 대한 부피법에 의한 열분석)

  • HAN, JEONG SEB;PARK, KYUNG DUCK
    • Journal of Hydrogen and New Energy
    • /
    • v.26 no.4
    • /
    • pp.308-317
    • /
    • 2015
  • To investigate the effect of microstructure on the formation of the desorption peak, the volumetric thermal analysis technique (VTA) was applied to the Mg-13.5 wt% Ni hydride system. The sample made by the HCS (hydriding combustion synthesis) process had two kinds of Mg microstructures. Linear heating was started with various constant heating rates. Only one peak was appeared in the case of the small initial hydrogen wt% (0.83 wt%). Yet, two peaks were appeared with increasing initial hydrogen wt% (1.85 and 3.73 wt%) when only Mg was hydrogenated. The first peak was formed through the evolution of hydrogen from $MgH_2$, made by eutectic Mg. The second peak was formed through the evolution of hydrogen from $MgH_2$, made by primary Mg. Therefore, this result shows that the microstructure also has a considerable effect on forming the desorption peak. We have also derived the hydrogen desorption equations by VTA to get apparent activation energy when the rate-controlling step for the desorption of the hydrided system is the diffusion of hydrogen through the ${\alpha}$ phase and the chemical reaction ${\beta}{\rightarrow}{\alpha}$.

A Numerical Investigation of Hydrogen Absorption Reaction Based on ZrCo for Tritium Storage (I) (삼중수소 저장을 위한 ZrCo 저장재에서의 수소 흡장에 대한 수치해석적 연구 (I))

  • Yoo, Haneul;Yun, Seihun;Chang, Minho;Kang, Hyungoo;Ju, Hyunchul
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.5
    • /
    • pp.448-454
    • /
    • 2012
  • In this paper, a three-dimensional hydrogen absorption model is applied to a thin double-layered annulus ZrCo hydride bed and validated against the temperature evolution data measured by Kang et al. The present model reasonably captures the bed temperature evolution behavior and the 99% hydrogen charging time. The equilibrium pressure expression for hydrogen absorption on ZrCo is derived as a function of temperature and the H/M atomic ratio based on the pressure-composition isotherm data given by Konishi et al. In addition, this present model provides multi-dimensional contours such as temperature and H/M atomic ratio in the thin doublelayered annulus metal hydride region. This numerical study provides fundamental understanding during hydrogen absorption process and indicates that efficient design of the metal hydride bed is critical to achieve rapid hydrogen charging performance. The present three-dimensional hydrogen absorption model is a useful tool for the optimization of bed design and operating conditions.

Reaction of Potassium 2-Thexyl-1,3,2-dioxaborinane Hydride with Selected Organic Compounds Containing Representative Functional Groups

  • Jin Soon Cha;Sung Eun Lee
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.5
    • /
    • pp.531-537
    • /
    • 1992
  • The approximate rates and stoichiometry of the reaction of excess potassium 2-thexyl-1,3,2-dioxaborinane hydride(KTDBNH) with 55 selected compounds containing representative functional groups under standardized conditions (tetrahydrofuran, TEX>$0^{\circ}C$, reagent : compound=4 : 1) was examined in order to define the characteristics of the reagent for selective reductions. Benzyl alcohol and phenol evolve hydrogen immediately. However, primary, secondary and tertiary alcohols evolve hydrogen slowly, and the rate of hydrogen evolution is in order of $1^{\circ}$> $2^{\circ}$> $3^{\circ}$. n-Hexylamine is inert toward the reagent, whereas the thiols examined evolve hydrogen rapidly. Aldehydes and ketones are reduced rapidly and quantitatively to give the corresponding alcohols. Cinnamaldehyde is rapidly reduced to cinnamyl alcohol, and further reduction is slow under these conditions. The reaction with p-benzoquinone dose not show a clean reduction, but anthraquinone is cleanly reduced to 9,10-dihydro-9,10-anthracenediol. Carboxylic acids liberate hydrogen immediately, further reduction is very slow. Cyclic anhydrides slowly consume 2 equiv of hydride, corresponding to reduction to the caboxylic acid and alcohol stages. Acid chlorides, esters, and lactones are rapidly and quantitatively reduced to the corresponding carbinols. Epoxides consume 1 equiv hydride slowly. Primary amides evolve 1 equiv of hydrogen readily, but further reduction is slow. Tertiary amides are also reduced slowly. Both aliphatic and aromatic nitriles consume 1 equiv of hydride rapidly, but further hydride uptake is slow. Analysis of the reaction mixture with 2,4-dinitrophenylhydrazine yields 64% of caproaldehyde and 87% of benzaldehyde, respectively. 1-Nitropropane utilizes 2 equiv of hydride, one for hydrogen evolution and the other for reduction. Other nitrogen compounds examined are also reduced slowly. Cyclohexanone oxime undergoes slow reduction to N-cyclohexylhydroxyamine. Pyridine ring is slowly attacked. Disulfides examined are reduced readily to the correponding thiols with rapid evolution of 1 equiv hydrogen. Dimethyl sulfoxide is reduced slowly to dimethyl sulfide, whereas the reduction of diphenyl sulfone is very slow. Sulfonic acids only liberate hydrogen quantitatively without any reduction. Finally, cyclohexyl tosylate is inert to this reagent. Consequently, potassium 2-thexyl-1,3,2-dioxaborinane hydride, a monoalkyldialkoxyborohydride, shows a unique reducing characteristics. The reducing power of this reagent exists somewhere between trialkylborohydrides and trialkoxyborohydride. Therefore, the reagent should find a useful application in organic synthesis, especially in the field of selective reduction.

Recent Developments in H2 Production Photoelectrochemical Electrode Materials by Atomic Layer Deposition (원자층증착법을 이용한 수소 생성용 광전기화학 전극 소재 개발 동향)

  • Han, Jeong Hwan
    • Journal of Powder Materials
    • /
    • v.25 no.1
    • /
    • pp.60-68
    • /
    • 2018
  • The design and fabrication of photoelectrochemical (PEC) electrodes for efficient water splitting is important for developing a sustainable hydrogen evolution system. Among various development approaches for PEC electrodes, the chemical vapor deposition method of atomic layer deposition (ALD), based on self-limiting surface reactions, has attracted attention because it allows precise thickness and composition control as well as conformal coating on various substrates. In this study, recent research progress in improving PEC performance using ALD coating methods is discussed, including 3D and heterojunction-structured PEC electrodes, ALD coatings of noble metals, and the use of sulfide materials as co-catalysts. The enhanced long-term stability of PEC cells by ALD-deposited protecting layers is also reviewed. ALD provides multiple routes to develop improved hydrogen evolution PEC cells.

Hydrogen evolution reaction (HER) properties of pulse laser irradiated platinum catalysts with tailored size

  • Jeonghun Lee;Hyunsung Jung
    • Journal of the Korean institute of surface engineering
    • /
    • v.57 no.4
    • /
    • pp.331-337
    • /
    • 2024
  • Platinum has been utilized as an excellent electrocatalyst with low overpotential for the hydrogen evolution reaction (HER) in water splitting, despite of its high cost. In this study, platinum particles were produced using pulsed laser technology as a HER catalyst for water splitting. The colloidal platinum particles were synthesized by nanosecond pulsed laser irradiation (PLI) without reducing agents, not traditional polyol processes including reducing agents. The crystal structure, shape and size of the synthesized platinum particles as a function of pulsed laser irradiation time were investigated by XRD and SEM analysis. Additionally, the electrochemical properties for the HER in water splitting of the irradiation time-dependent platinum electrocatalysts were studied with the analysis of overpotentials in linear sweep voltammetry and Tafel slope.

Degassing of Aluminum and Aluminum Alloy Powders as Studied by Gas Chromatography

  • Watanabe, Ryuzo;Choi, Duk-Sun;Kawasaki, Akira
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.716-717
    • /
    • 2006
  • Gas release behavior from aluminum and Al 7075 alloy powders during heating in argon was investigated by in-situ gas chromatography. Water vapor, hydrogen, carbon mono-oxide were detected as individual evolution spectra against heating temperature and time. The mechanisms of water and hydrogen evolutions were studied in detail for the determination of effective degassing condition. Magnesium in the alloy powder was found to lower the hydrogen evolution temperature to enhance overall hydrogen release.

  • PDF

The Relationship between Hydrogenase and Nitrogenase for Hydrogen Evolution in Rhodopseudomonas sp. KCTC 1437 (Rhodopseudomonas sp. KCTC 1437의 수소생성에 있어서의 Hydrogenase와 Nitrogenase의 관계)

  • Seol, Won-Gi;Kho, Yung-Hee
    • Microbiology and Biotechnology Letters
    • /
    • v.14 no.5
    • /
    • pp.385-389
    • /
    • 1986
  • Both hydrogenase and nitrogenase were found to be involved in hydrogen evolution independently in Rhodopseudomonas sp. KCTC 1437. The hydrogen formation in this bacterium was independent on light illumination and presence of N $H_4^{+}$ After establishment of conditions to measure the amount of hydrogen evolved by each of the enzymes in vivo, the several factors affecting on the hydrogen evolution, e.g. presence of gases ( $C_2$ $H_2$, $H_2$, $O_2$ or $N_2$), C/N ratio, were investigated, Hydrogenase was less inhibited than nitrogenase under $O_2$ and was active independent on the presence of $N_2$ or $C_2$ $H_2$ which were the strong inhibitor of nitrogenase. Besides, the hydrogenase activity was increased after incubation with $H_2$. And it was verified that this bacterium consume hydrogen and photoreduce $CO_2$ by hydrogenase. From above results, it is concluded that hydrogenase in Rhodopseudomonas sp. KCTC 1437 can produce hydrogen under more favorable condition that nitrogenase.e.

  • PDF

A Stereochemical Aspect of Pyridoxal 5' -Phosphate Dependent Enzyme Reactions and Molecular Evolution

  • Jhee, Kwang-Hwan;Tohru, Yoshimura;Yoichi, Kurokawa;Nobuyoshi, Esaki;Kenji, Soda
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.6
    • /
    • pp.695-703
    • /
    • 1999
  • We have studied the stereospecificities of various pyridoxal 5'-phosphate (PLP) dependent enzymes for the hydrogen transfer between the C-4' of a bound coenzyme and the C-2 of a substrate in the transamination catalyzed by the enzymes. Stereospecificities reflect the structures of enzyme active-sites, in particular the geometrical relationship between the coenzyme-substrate Schiff base and the active site base participating in an $\alpha$-hydrogen abstraction. The PLP enzymes studied so far catalyze only a si-face specific (pro-S) hydrogen transfer. This stereochemical finding suggests that the PLP enzymes have the same topological active-site structures, and that the PLP enzymes have evolved divergently from a common ancestral protein. However, we found that o-amino acid aminotransferase, branched chain L-amino acid aminotransferase, and 4-amino-4-deoxychorismate lyase, which have significant sequence homology with one another, catalyze a re-face specific (pro-R) hydrogen transfer. We also showed that PLP-dependent amino acid racemases, which have no sequence homology with any aminotransferases, catalyze a non-stereospecific hydrogen transfer: the hydrogen transfer occurs on both faces of the planar intermediate. Crystallographical studies have shown that the catalytic base is situated on the re-face of the C-4' of the bound coenzyme in o-amino acid aminotransferase and branched chain L-amino acid aminotransferase, whereas the catalytic base is situated on the si-face in other aminotransferases (such as L-aspartate aminotransferase) catalyzing the si-face hydrogen transfer. Thus, we have clarified the stereospecificities of PLP enzymes in relation with the primary structures and three-dimensional structures of the enzymes. The characteristic stereospecificities of these enzymes for the hydrogen transfer suggest the convergent evolution of PLP enzymes.

  • PDF