• 제목/요약/키워드: Hydrogen deposition

Search Result 566, Processing Time 0.029 seconds

Effect of Hydrogen Dilution Ratio on The Si Hetero-junction Interface and Its Application to Solar Cells (수소 희석비에 따른 실리콘 이종접합 계면에 대한 분석 및 태양전지로의 응용)

  • Park, Jun-Hyoung;Myong, Seung-Yeop;Lee, Ga-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.12
    • /
    • pp.1009-1014
    • /
    • 2012
  • Hydrogenated amorphous silicon (${\alpha}$-Si:H) layers deposited by plasma enhanced chemical vapor deposition (PECVD) are investigated for use in silicon hetero-junction solar cells employing n-type crystalline silicon (c-Si) substrates. The optical and structural properties of silicon hetero-junction devices have been characterized using spectroscopy ellipsometry and high resolution cross-sectional transmission electron micrograph (HRTEM). In addition, the effective carrier lifetime is measured by the quasi-steady-state photocoductance (QSSPC) method. We have studied on the correlation between the order of ${\alpha}$-Si:H and the passivation quality at the interface of ${\alpha}$-Si:H/c-Si. Base on the result, we have fabricated a silicon hetero-junction solar cell incorporating the ${\alpha}$-Si:H passivation layer with on open circuit voltage ($V_{oc}$) of 637 mV.

Electrostatic Charging and Substrate Seeding in Gas Phase Synthesis of Nanocrystalline Diamond Powder

  • Cho, Jung-Min;Lee, Hak-Joo;Choi, Heon-Jin;Lee, Wook-Seong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.418-418
    • /
    • 2012
  • Synthesis of nanocrystalline diamond powder was investigated via a gas-to-particle scheme using the hot filament chemical vapor deposition. Effect of substrate surface seeding by nano diamond powder, and that of the electrical conductance of the substrate were studied. The substrate temperature, methane content in the precursor gas, filament-substrate distance and filament temperature were $670^{\circ}C$, 5% methane in hydrogen, 10 mm and $2400^{\circ}C$, respectively. The powder formation by gas-to-particle mechanism were greatly enhanced by the substrate seeding by the nano diamond powder. It was attributed to the removal of the electrostatic force between the substrate and the seeded nano diamond particle by the thermal electron shower from the hot filament, via the depolarization of the substrate surface or the attached diamond powder and subsequent levitation into the gas phase to serve as the gas-phase nucleation site. The powder formation was greatly favoured by the conducting substrate relative to the insulating substrate, which proved the actual effect of the electric static force in the powder formation.

  • PDF

Study on the Seasoning Effect for Amorphous In-Ga-Zn-O Thin Film Transistors with Soluble Hybrid Passivation

  • Yun, Su-Bok;Kim, Du-Hyeon;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.256-256
    • /
    • 2012
  • Oxide semiconductors such as zinc tin oxide (ZTO) or indium gallium zinc oxide (IGZO) have attracted a lot of research interest owing to their high potential for application as thin film transistors (TFTs) [1,2]. However, the instability of oxide TFTs remains as an obstacle to overcome for practical applications to electronic devices. Several studies have reported that the electrical characteristics of ZnO-based transistors are very sensitive to oxygen, hydrogen, and water [3,4,5]. To improve the reliability issue for the amorphous InGaZnO (a-IGZO) thin-film transistor, back channel passivation layer is essential for the long term bias stability. In this study, we investigated the instability of amorphous indium-gallium-zinc-oxide (IGZO) thin film transistors (TFTs) by the back channel contaminations. The effect of back channel contaminations (humidity or oxygen) on oxide transistor is of importance because it might affect the transistor performance. To remove this environmental condition, we performed vacuum seasoning before the deposition of hybrid passivation layer and acquired improved stability. It was found that vacuum seasoning can remove the back channel contamination if a-IGZO film. Therefore, to achieve highly stable oxide TFTs we suggest that adsorbed chemical gas molecules have to be eliminated from the back-channel prior to forming the passivation layers.

  • PDF

Synthesis of Semiconducting $KTaO_3$ Thin films

  • Bae, Hyung-Jin;Ku, Jayl;Ahn, Tae-Won;Lee, Won-Seok
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.1265-1268
    • /
    • 2005
  • In this study, the synthesis and semiconducting properties of cation and defect-doped $KTaO_3$ film is reported. $KTaO_3$ is an important material for optoelectronic and tunable microwave applications. It is an incipient ferroelectric with a cubic structure that becomes ferroelectric when doped with Nb. While numerous studies have investigated the thin-film growth of semiconducting perovskites, little is reported about semiconducting $KTaO_3$ thin films. In this work, the films were grown on (001) MgO single crystal substrates using pulsed-laser deposition. Semiconducting behavior is achieved by inducing oxygen vacancies in the $KTaO_3$ lattice via growth in a hydrogen atmosphere. The resistivity of semiconducting $KTaO_3:Ca$ films was as low as 10cm, and n-type semiconducting behavior was indicated. Hall mobility and carrier concentration were $0.27cm^2/Vs$ and $3.21018cm^{-3}$, respectively. Crystallinity and microstructure of the $KTaO_3:Ca$ films were examined using X-ray diffraction and field-emission scanning microscopy.

  • PDF

Synthesis, Thermal Decomposition Pattern and Single Crystal X-Ray Studiesof Dimeric [Cu(dmae)(OCOCH3)(H2O)]2: A Precursor for the Aerosol Assisted Chemical Vapour Deposition of Copper Metal Thin Films

  • Mazhar, Muhammad;Hussain, S.M.;Rabbani, Faiz;Kociok-Kohn, Gabriele;Molloy, Kieran C.
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.10
    • /
    • pp.1572-1576
    • /
    • 2006
  • A dimeric precursor, $[Cu(dmae)(OCOCH_3)(H_2O)]_2$ for the CVD of copper metal films, (dmaeH = N,N-dimethylaminoethanol) was synthesized by the reaction of copper(II) acetate monohydrate ($Cu(OCOCH_3)_2{\cdot}H_2O$) and dmaeH in toluene. The product was characterized by m.p. determination, elemental analysis and X-ray crystallography. Molecular structure of $[Cu(dmae)(OCOCH_3)(H_2O)]_2$ shows that a dimeric unit $[Cu(dmae)(OCOCH_3)(H_2O)]_2$ is linked to another through hydrogen bond and it undergoes facile decomposition at 300 C to deposit granular copper metal film under nitrogen atmosphere. The decomposition temperature, thermal behaviour, kinetic parameters, evolved gas pattern of the complex, morphology, and the composition of the film were also investigated.

Growth of Carbon Nanotubes for Nano Device Application (나노 디바이스 응용을 위한 탄소나노튜브 성장 특성)

  • Park, Yong-Wook;Lee, Seung-Dae
    • Journal of the Korea Computer Industry Society
    • /
    • v.8 no.1
    • /
    • pp.17-22
    • /
    • 2007
  • Carbon nanotubes (CNTs) were grown by a thermal chemical vapor deposition (CVD) method, which has been regarded as one of the most promising candidates for the synthesis of CNTs due to low cost and high growth yield. The Ethylene $(C_2H_4)$, hydrogen $(H_2)$ and Argon(Ar) gases were used for the growth of CNTs at $700^{\circ}C$. As a catalyst for CNTs growth, Fe thin film and Iron nitrate and Molybdenyl acetylacetonate solution with alumina nano-particle were prepared on $SiO_2/Si$ substrate. The growth properties of CNTs were analyzed by SEM and AFM.

  • PDF

Numerical Analysis on the Beat and Mass Transport in Horizontal MOCVD Reactor for the Growth of GaN Epitaxy (수평형 MOCVD에 의한 GaN 에피층 성장시 반응로내의 열 및 물질전달에 관한 수치해석 연구)

  • 신창용;윤정모;이철로;백병준
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.3
    • /
    • pp.341-349
    • /
    • 2001
  • Numerical calculation has been performed to investigate the fluid flow, heat transfer and local mass fraction of chemical species in the MOCVD(metalorganic chemical vapor deposition) manufacturing process. The mixing of reactants (trimethylgallium with hydrogen gas and ammonia) was presented by the concentration of each reactant to predict the uniformity of film growth. Effects of inlet size, location, mass flow rate and susceptor/cold wall tilt angle on the concentration were reported. From the numerical calculation, the concentration of reactants could be qualitatively predicted by the Nusselt number(heat transfer) and the optimum mass flow rate, wall tilt angle and inlet condition were considered.

  • PDF

Pore Size Control of Silica-Coated Alumina Membrane for $CO_2$ Separation ($CO_2$ 선택투과 분리를 위한 Silica 코팅 Alumina 막의 세공 제어)

  • 서봉국;김성수;김태옥
    • Journal of Environmental Science International
    • /
    • v.8 no.2
    • /
    • pp.263-269
    • /
    • 1999
  • For effective $CO_2$ separation using pore size controlled membrane, silica was deposited in the mesopores of a $\gamma$-alumina film by chemical vapor deposition of tetraethoxysilane (TEOS) and phenyl-substituted ethoxysilanes at 773-873K. The membranes prepared with phenyl-substituted ethoxysilanes were calcined to remove the phenyl group and control the pore size. The gas permaselectivity of prepared membranes was evaluated by using $H_2$, $CO_2$ $N_2$, $CH_2$ and $C_3H_8$ single component and a mixture of $CO_2$ and $N_2$. The membranes produced using TEOS contained micropores having permselectivity only to hydrogen, but the phenyl-subsitituted ethoxysilane derived membranes possessed micorpores which are recognizable molecules of $CO_2$, $N_2$ and $CH_4$. In the diphenyl-diethoxysilane-derived membrane, the $CO_2$ permeance and selectivity of $CO_2$/$CH_4$ were $10^{-6} m^3(STP) \cdot m^{-2} \cdot s^{-1} \cdot kPa^{-1}$ and 11, respectively. Therefore, the use of phenyl-substituted ethoxysilane was effective in controlling micropore size for $CO_2$ separation.

  • PDF

Electrical characteristics of carbon nitride capacitor for micro-humidity sensors (마이크로 습도센서를 위한 질화탄소막 캐패시터의 전기적 특성)

  • Kim, Sung-Yeop;Lee, Ji-Gong;Chang, Choong-Won;Lee, Sung-Pil
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.97-103
    • /
    • 2007
  • Crystallized carbon nitride film that has many stable physical and/or chemical properties has been expected potentially by a new electrical material. However, one of the most significant problems degrading the quality of carbon nitride films is an existence of N-H and C-H bonds from the deposition environment. The possibility of these reactions with hydroxyl group in carbon nitride films, caused by a hydrogen attack, was suggested and proved in our previous reports that this undesired effect could be applied for fabricating micro-humidity sensors. In this study, MIS capacitor and MIM capacitor with $5{\mu}m{\times}5{\mu}m$ meshes were fabricated. As an insulator, carbon nitride film was deposited on a $Si_{3}N_{4}/SiO_{2}/Si$ substrate using reactive magnetron sputtering system, and its dielectric constant, C-V characteristics and humidity sensing properties were investigated. The fabricated humidity sensors showed a linearity in the humidity range of 0 %RH to 80 %RH. These results reveal that MIS and MIM $CN_{X}$ capacitive humidity sensors can be used for Si based micro-humidity sensors.

$CO_2$ reforming of $CH_4$ and growth of CNT on Ni catalyst (메탄의 이산화탄소 개질반응과 사용된 Ni 촉매 표면에서의 CNT 성장)

  • Kim, Hee-Yeon;Jeong, Nam-Ho;Song, Kwang-Sup
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.511-512
    • /
    • 2008
  • For the $CO_2$ reforming of $CH_4$, Ni catalyst was supported on La-hexaaluminate or on $\gamma$-$Al_2O_3$. The catalytic activities of Ni/La-hexaaluminate catalysts were measured at $700^{\circ}C$ using gas chromatography (GC) for 72 h, and the reaction was maintained up to 72 hfor the investigation of catalyst deactivation. The surface of each catalyst after 72 h reaction was investigated using SEM and TEM, and the composition of the carbon deposits was investigated by using EA, TPO and TGA. Ni/La-hexaaluminate shows higher resistance to coke deposition than conventional Ni/$Al_2O_3$ which seems to be due to strong interaction between Ni and the support material. As a result of the reforming reaction, various types of carbon deposits were created on catalyst surface and the amounts of them were much smaller in the case of La-hexaaluminate than on $Al_2O_3$.

  • PDF