• Title/Summary/Keyword: Hydrogen degradation

Search Result 428, Processing Time 0.025 seconds

The Study of Statistical Optimization of MTBE Removal by Photolysis(UV/H2O2) (광분해반응을 통한 MTBE 제거에 대한 통계적 최적화 연구)

  • Chun, Sukyoung;Chang, Soonwoong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.9
    • /
    • pp.55-61
    • /
    • 2011
  • This study investigate the use of ultraviolet(UV) light with hydrogen peroxide($H_2O_2$) for Methyl Tert Butyl Ether(MTBE) degradation in photolysis reactor. The process in general demands the generation of OH radicals in solution at the presence of UV light. These radicals can then attack the MTBE molecule and it is finally destroyed or converted into a simple harmless compound. The MTBE removal by photolysis were mathematically described as the independent variables such as irradiation intensity, initial concentration of MTBE and $H_2O_2$/MTBE ratio, and these were modeled by the use of response surface methodology(RSM). These experiments were carried out as a Box-Behnken Design(BBD) consisting of 15 experiments. Regression analysis term of Analysis of Variance(ANOVA) shows significantly p-value(p<0.05) and high coefficients for determination values($R^2$=94.60%) that allow satisfactory prediction of second-order regression model. And Canonical analysis yields the stationery point for response, with the estimate ridge of maximum responses and optimal conditions for Y(MTBE removal efficiency, %) are $x_1$=25.75 W of irradiation intensity, $x_2$=7.69 mg/L of MTBE concentration and $x_3$=11.04 of $H_2O_2$/MTBE molecular ratio, respectively. This study clearly shows that RSM is available tool for optimizing the operating conditions to maximize MTBE removal.

Development and Biogenesis of Peroxisome in Oil-seed Plants (지방 저장 식물의 퍼옥시좀 생성과 발달)

  • Dae-Jae Kim
    • Journal of Life Science
    • /
    • v.33 no.8
    • /
    • pp.651-662
    • /
    • 2023
  • Peroxisomes, known as microbodies, are a class of morphologically similar subcellular organelles commonly found in most eukaryotic cells. They are 0.2~1.8 ㎛ in diameter and are bound by a single membrane. The matrix is usually finely granular, but occasionally crystalline or fibrillary inclusions are observed. They characteristically contain hydrogen peroxide (H2O2) generating oxidases and contain the enzyme catalase, thus confining the metabolism of the poisonous H2O2 within these organelles. Therefore, the eukaryotic organelles are greatly dynamic both in morphology and metabolism. Plant peroxisomes, in particular, are associated with numerous metabolic processes, including β-oxidation, the glyoxylate cycle and photorespiration. Furthermore, plant peroxisomes are involved in development, along with responses to stresses such as the synthesis of important phytohormones of auxins, salicylic acid and jasmonic acids. In the past few decades substantial progress has been made in the study of peroxisome biogenesis in eukaryotic organisms, mainly in animals and yeasts. Advancement of sophisticated techniques in molecular biology and widening of the range of genomic applications have led to the identification of most peroxisomal genes and proteins (peroxins, PEXs). Furthermore, recent applications of proteome study have produced fundamental information on biogenesis in plant peroxisomes, together with improving our understanding of peroxisomal protein targeting, regulation, and degradation. Nonetheless, despite this progress in peroxisome development, much remains to be explained about how peroxisomes originate from the endoplasmic reticulum (ER), then assemble and divide. Peroxisomes perform dynamic roles in many phases of plant development, and in this review, we focus on the latest progress in furthering our understanding of plant peroxisome functions, biogenesis, and dynamics.

A Study on Treatment of Soils Contaminated by Diesel and Kerosene Using Hydrogen Peroxide Catalyzed by Naturally Occurring Iron Minerals (디젤과 등유로 오염된 토양의 철광석으로 촉매화된 과수를 이용한 처리에 관한 연구)

  • Choi, Jin-Ho;Kim, Sang-Dae;Moon, Sei-Ki;Kong, Sung-Ho
    • Applied Chemistry for Engineering
    • /
    • v.10 no.1
    • /
    • pp.24-29
    • /
    • 1999
  • Naturally-occurring iron minerals, goethite, magnetite, and hydrogen peroxide were used to catalyze and initiate Fenton-like oxidation of silica sand contaminated with mixture of diesel and kerosene in batch system. Optimal reaction conditions were investigated by varying pH(3, 7), $H_2O_2$ concentration(0%, 1%, 7%, 15%, 35%), initial contaminant concentration(0.2, 0.5, 1.0 g-mixture of diesel and kerosene/ kg-soil), and iron mineral contents(1, 5, and 10 wt % magnetite or goethite). Contaminant degradations in silica sand-iron mineral-$H_2O_2$ systems were identified by determining total petroleum hydrocarbon(TPH) concentration. The optimal pH of the system was 3. The system which iron minerals were the only iron source was more efficient than the system with $FeSO_4$ solution due to lower $H_2O_2$ consumption. In case of initial contaminant concentration of 1g-contaminant/kg-soil with 5 wt % magnetite, addition of 0%, 1%, 7%, 15%, and 35% of $H_2O_2$ showed 0%, 24.5%, 44%, 52%, and 70% of TPH reduction in 8 days, respectively. When the mineral contents were varied 0, 1, 5, and 10wt%, removal of contaminants were 0%, 33.5%, 50%, and 60% for magnetite and 0%, 29%, 41%, and 53% for goethite, respectively. Reaction of magnetite system showed higher degradation than that of goethite system due to dissolution of iron and mixed presence of iron(II) and iron(III); however, dissolved iron precipitated on the surface of iron mineral and seemed to cause reducing electron transfer activity on the surface and quenching $H_2O_2$. The system using goethite has better treatment efficiency due to less $H_2O_2$ consumption. When cach system was mixed by shaker, removal of contaminants increased by 41% for magnetite and 30% for goethite. Results of this study showed catalyzed $H_2O_2$ system made in-situ treatment of soil contaminated with petroleum possible without addition of iron source since natural soils generally contain iron minerals such as magnetite and goethite.

  • PDF

Geochemical characteristics of organic matter in the Tertiary sediments from the JDZ Blocks, offshore Korea (대륙붕 한일공동광구에 분포하는 제 3기 시추 시료 유기물의 지화학적 특성)

  • Lee Youngjoo;Yun Hyesu;Cheong Taejin;Kwak Younghoon;Oh Jaeho
    • The Korean Journal of Petroleum Geology
    • /
    • v.6 no.1_2 s.7
    • /
    • pp.25-36
    • /
    • 1998
  • Organic geochemical analyses were carried out in order to characterize organic matter (OM) in the sediments recovered from Korea/japan Joint Development Zone (JDZ V-1, V-3, VII-1 and VII-2) which is located in the northern end of the East China Sea Shelf Basin. Late Miocene sediments from the JDZ V-1 and V-3 wells generally contain less than $0.5\%$ of total organic carbon (TOC). However, early Miocene and Oligocene sediments show TOC values of $0.6-0.8\%$. Middle to late Miocene sediments are rich in TOC up to $20\%$ from JDZ VII-1 and JDZ VII-2 wells. The reason for this rich TOC might be attributed to the presence of coaly shales. Kerogens in the Tertiary sediments from the JDZ series wells are mainly composed of terrestrially derived woody organic matter. Elemental analyses indicate that OM from these wells can be compared to type III. Low hydrocarbon potential and hydrogen index reflect the type of OM. According to the biomarker analyses, the input of the terrestrial OM is prevalent. Oxidizing condition is also indicated by Pristane/Phytane ratio. Samples from the JDZ V-1 and V-3 wells obtain maturities equivalent to the oil generation zone around total depth, and organic matter below 3600 m from JDZ VII-1 and VII-2 wells reached dry gas generation stage. Oligocene sediments below 3500 m in the JDZ VII-1 and JDZ VII-2 wells may have generated limited amount of hydrocarbons, showing a progressive decrease in hydrogen index with depth, due to thermal degradation with increased burial. Gas shows and finely disseminated gilsonite may indicate the generation and migration of the hydrocarbons.

  • PDF

Cytoprotective Effects of Schisandrin A against Hydrogen Peroxide-induced Oxidative Stress in SW1353 Human Chondrocytes (SW1353 인간 연골세포에서 산화적 스트레스에 대한 schisandrin A의 세포 보호 효과)

  • Jeong, Jin-Woo;Choi, Eun Ok;Kwon, Da Hye;Kim, Bum Hoi;Park, Dong Il;Hwang, Hye Jin;Kim, Byung Woo;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.27 no.9
    • /
    • pp.1070-1077
    • /
    • 2017
  • Chondrocyte apoptosis induced by reactive oxygen species (ROS) plays an important role in the pathogenesis of osteoarthritis. Schisandrin A, a bioactive compound found in fruits of the Schisandra genus, has been reported to possess multiple pharmacological and therapeutic properties. Although several studies have described the antioxidant effects of analogues of schisandrin A, the underlying molecular mechanisms of this bioactive compound remain largely unresolved. The present study investigated the cytoprotective effect of schisandrin A against oxidative stress (hydrogen peroxide [$H_2O_2$]) in SW1353 human chondrocyte cells. The results showed that schisandrin A preconditioning significantly inhibited $H_2O_2-induced$ growth inhibition and apoptotic cell death by blocking the degradation of poly (ADP-ribose) polymerase proteins and down-regulating pro-caspase-3. These antiapoptotic effects of schisandrin A were associated with attenuation of mitochondrial dysfunction and normalization of expression changes of proapoptotic Bax and antiapoptotic Bcl-2 in $H_2O_2-stimulated$ SW1353 chondrocytes. Furthermore, schisandrin A effectively abrogated $H_2O_2-induced$ intracellular ROS accumulation and phosphorylation of histone H2AX at serine 139, a widely used marker of DNA damage. Thus, the present study demonstrates that schisandrin A provides protection against $H_2O_2-induced$ apoptosis and DNA damage in SW1353 chondrocytes, possibly by prevention of ROS generation. Collectively, our data indicate that schisandrin A has therapeutic potential in the treatment of oxidative disorders caused by overproduction of ROS.

Catalytic Wet Oxidation of Azo Dye Reactive Black 5 (아조염료 Reactive Black 5 폐수의 촉매습식산화)

  • Suh, Il-Soon;Yoo, Shin-Suk;Ko, Mi-So;Jeong, Samuel;Jung, Cheol-Goo;Hong, Jeong-Ah;Yoon, Wang-Lai
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.259-267
    • /
    • 2010
  • The catalytic wet oxidations of the wastewater containing azo dye Reactive Black 5(RB5) with heterogeneous catalyst of CuO have been carried out to investigate the effects of temperature($190{\sim}230^{\circ}C$) and catalyst concentration(0.00~0.20 g/l) on the removals of colour and total organic carbon TOC. The wastewater colour was measured with spectrophotometer, and the oxidation rate was estimated with TOC. About 90% of colour was removed during 120 min in thermal degradation of the RB5 wastewater at $230^{\circ}C$, while TOC was not removed at all. As increasing reaction temperature and catalyst concentration, the removal rates of colour and TOC increased in the catalytic wet oxidations of RB5 wastewater. The effects of catalyst were already considerable even at 0.01 g CuO/l, while the removal rates of colour and TOC increased negligibly with increasing the catalyst concentration above 0.05 g CuO/l. The initial destruction rates of the wastewater colour have shown the first-order kinetics with respect to the wastewater colour. TOC changes during catalytic wet oxidations have been well described with the global model, in which the easily degradable TOC was distinguished from non-degradable TOC of the wastewater. The impacts of reaction temperature on the destruction rate of the wastewater colour and TOC could be described with Arrhenius relationship. Activation energies of the colour removal reaction in thermal degradation, wet oxidation, and catalytic wet oxidation(0.20 g CuO/l) of the RB5 wastewater were 108.4, 78.3 and 74.1 kJ/mol, respectively. The selectivity of wastewater TOC into the non-degradable intermediates relative to the end products in the catalytic wet oxidations of RB5 wastewater was higher compared to that in phenol wet oxidations.

Behaviour of the Soil Residues of the Acaricide-Insecticide, [$^{14}C$]Acrinathrin;I. Behaviour during Crop(Maize) Cultivation (살비살충제 [$^{14}C$Acrinathrin 토양 잔류물의 행적 규명;I. 농작물(옥수수) 재배시의 행적)

  • Lee, Jae-Koo;Kyung, Kee-Sung;Kwon, Jeong-Wook;Ahn, Ki-Chang;Jung, In-Sang
    • Korean Journal of Environmental Agriculture
    • /
    • v.14 no.2
    • /
    • pp.186-201
    • /
    • 1995
  • In order to elucidate the fate of the residues of the pyrethroid acaricide-insecticide, acrinathrin in soil, maize plants were grown for one month on the specially-made pots filled with two different types of soils containing fresh and one-month-aged residues of [$^{14}C$]acrinathrin, respectively. The mineralization of [$^{14}C$]acrinathrin to $^{14}CO_2$ during the one-month period of aging and of maize cultivation amounted to $23{\sim}24%$ and $24{\sim}33%$, respectively, of the original $^{14}C$ activities. At harvest after one-month growing, the shoots and roots contained less than 0.1% and 1% of the originally applied $^{14}C$ activity, respectively, whereas the $^{14}C$ activity remaining in soil was $65{\sim}80%$ in both soils. Three degradation products with m/z 198(3-phenoxybenzaldehyde), m/z 214(3-phenoxybenzoic acid), and m/z 228(methyl 3-phenoxybenzoate) besides an unknown were identified from acetone extracts of both soils without and with maize plants after treatment of [$^{14}C$]acrinathrin, by autoradiography and GC-MS, and those with m/z 225(3-phenoxybenzaldehyde cyanohydrin) and m/z 198 (3-phenoxybenzaldehyde) from acetone extract of the Soil A treated with 50 ppm acrinathrin and grown with maize plants for 30 days were identified by mass spectrometry. These results suggested that the hydrolytic cleavage of the ester linkage adjacent to the $^{14}C$ with a cyano group, forming 3-phenoxybenzaldehyde cyanohydrin. The removal of hydrogen cyanide therefrom leads to the formation of 3-phenoxybenzaldehyde as one of the major products. The subsequent oxidation of the aldehyde to 3-phenoxybenzoic acid, followed by decarboxylation would evolve $^{14}CO_2$. Solvent extractability of the soils where maize plants were grown for 1 month and/or [$^{14}C$]acrinathrin was aged for 1 month was less than 31% of the original $^{14}C$ activity and over 95% of the total $^{14}C$ activity in soil extracts was distributed in the organic phase. Accordingly, acrinathrin turned out to be degraded rapidly in both soils and be bound to soil constituents as well, not being available to crops.

  • PDF

The Role of Heme Oxygenase-1 in Lung Cancer Cells (폐암세포주에서 Heme Oxygenase-1의 역할)

  • Jung, Jong-Hoon;Kim, Hak-Ryul;Kim, Eun-Jung;Hwang, Ki-Eun;Kim, So-Young;Park, Jung-Hyun;Kim, Hwi-Jung;Yang, Sei-Hoon;Jeong, Eun-Taek
    • Tuberculosis and Respiratory Diseases
    • /
    • v.60 no.3
    • /
    • pp.304-313
    • /
    • 2006
  • Background : Heme oxygenase-1 (HO-1) is an inducible enzyme that catalyzes the oxidative degradation of heme to form biliverdin, carbon monoxide (CO), and free iron. The current evidence has indicated a critical role of HO-1 in cytoprotection and also in other, more diverse biological functions. It is known that the high expression of HO-1 occurs in various tumors, and that HO-1 has an important role in rapid tumor growth because of its antioxidative and antiapoptotic effects. Therefore, the role of HO-1 was analyzed in human lung cancer cell lines, and especially in the A549 cell line. Material and Methods : Human lung cancer cell lines, i.e., A549, NCI-H23, NCI-H157 and NCI-H460, were used for this study. The expression of HO-1 in the untreated state was defined by Western blotting. ZnPP, which is the specific HO inhibitor we used, and the viability of cells were tested for by conducting MTT assaysy. The HO enzymatic activity, as determined via the bilirubin level, was also indirectly measured. Moreover, the generation of intracellular hydrogen peroxide (H2O2) was monitored fluorimetrically with using a scopoletin-horse radish peroxidase (HRP) assay and 2',7'-dichlorofluorescein diacetate (DCFH-DA). We have also transfected small HO-1 interfering RNA (siRNA) into A549 cells, and the apoptotic effects were evaluated by flow cytometric analysis and Western blotting. Results : The A549 cells had a greater expression of HO-1 than the other cell lines, whereas ZnPP significantly decreased the viability of the A549 cells more than the viability of the other lung cancer cells in a dose-dependant fashion. Consistent with the viability, the HO enzymatic activity also was decreased. Moreover, intracellular H2O2 generation via ZnPP was induced in a dose-dependent manner. Apoptotic events were, then induced in the HO-1 siRNA transfected A549 cells. Conclusion : HO-1 provides new important insights into the possible molecular mechanism of the antitumor therapy in lung cancer.