• Title/Summary/Keyword: Hydrogen degradation

Search Result 428, Processing Time 0.024 seconds

Effect of Ramping Rate on the Durability of Proton Exchange Membrane Water Electrolysis During Dynamic Operation Using Triangular Voltage Cycling

  • Hye Young Jung;Yong Seok Jun;Kwan-Young Lee;Hyun S. Park;Sung Ki Cho;Jong Hyun Jang
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.253-260
    • /
    • 2024
  • Proton exchange membrane water electrolysis (PEMWE) is an efficient method for utilizing renewable energy sources such as wind and solar powers to produce green hydrogen. For PEMWE powered by renewable energy sources, its durability is a crucial factor in its performance since irregular and fluctuating characteristics of renewable energy sources, especially for wind power, can deteriorate the stability of PEMWE. Triangular voltage cycle is well able to simulate fluctuating wind power, but its effect on the durability has not been investigated extensively. In this study, the performance degradation of the PEMWE cell operated with the triangular voltage cycling was investigated at different ramping rates. The measured current responses during the cycling gradually decreased for both ramping rates, and I-V curve measurements before and after the cycling confirmed the degradation of the performances of PEMWE. For both measurements, the degradation rate was larger for 300 mV s-1 than 30 mV s-1, and they were determined as 0.36 and 1.26 mV h-1 (at the current density of 2 A cm-2) at the ramping rates of 30 and 300 mV s-1, respectively. The comparison with other studies on triangular voltage cycling also indicate that an increase in the ramping rate accelerates the deterioration of the PEMWE performance. X-ray photoelectron spectroscopy and transmission electron microscopy results showed that the Ir catalyst was oxidized and did not dissolve during the voltage cycling. This study suggests that the ramping rate of the triangular voltage cycling is an important factor for the evaluation of the durability of PEMWE cells.

Advanced Indentation Studies on the Effects of Hydrogen Attack on Tensile Property Degradation of Heat-Resistant Steel Heat-Affected Zones

  • Choi, Yeol;Jang, Jae-il;Lee, Yun-Hee;Kwon, Dongil;Kim, Jeong-Tae
    • Corrosion Science and Technology
    • /
    • v.2 no.6
    • /
    • pp.266-271
    • /
    • 2003
  • Safety diagnosis of various structural components and facilities is indispensable for preventing catastrophic failure of material by time-dependent and environment accelerating degradation. Also, this diagnosis of operating components should be done periodically for safe maintenance and economical repair. However, conventional standard methods for mechanical properties have the problems of bulky specimen, destructive procedure and complex procedure of specimen sampling. So, a non-destructive and simple mechanical testing method using small specimen is needed. Therefore, an advanced indentation technique was developed as a potential method for non-destructive testing of in-field structures. This technique measures indentation load-depth curve during indentation and analyzes the mechanical properties related to deformation such as yield strength, tensile strength and work-hardening index. In this paper, we characterized the tensile properties including yield and tensile strengths of the V-modified Cr-Mo steels in petro-chemical and thermo-electrical plants. And also, the effects of hydrogen-assisted degradation of the V-modified Cr-Mo steels were analyzed in terms of work-hardening index and yield ratio.

Degradation Comparison of Hydrogen and Internally Reformed Methane-Fueled Solid Oxide Fuel Cells

  • Kim, Young Jin;Lee, Hyun Mi;Lim, Hyung-Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.5
    • /
    • pp.483-488
    • /
    • 2016
  • Anode supported solid oxide fuel cells (SOFCs), consisting of Ni+YSZ anode, YSZ electrolyte, and LSM+YSZ cathode, were fabricated and constant current tested with direct internal reforming of methane (steam to carbon ratio ~ 2) as well as hydrogen fuel at $800^{\circ}C$. The cell, operated under direct internal reforming conditions, showed relatively rapid degradation (~ 1.6 % voltage drop) for 95 h; the cells with hydrogen fuel operated stably for 170 h. Power density and impedance spectra were also measured before and after the tests, and post-test analyses were conducted on the anode parts using SEM / EDS. The results indicate that the performance degradation of the cell operated with internal reforming can be attributed to carbon depositions on the anode, which increase the resistance against anode gas transport and deactivate the Ni catalyst. Thus, the present study shows that direct internal reforming SOFCs cannot be stably operated even under the condition of S/C ratio of ~ 2, probably due to non-uniform mixture (methane and steam) gas flow.

Characterization of Thermal Degradation of Polytrimethylene Terephthalate by MALDI-TOF Mass Spectrometry

  • Jang, Sung-Woo;Yang, Eun-Kyung;Jin, Sung-Il;Cho, Young-Dal;Choe, Eun-Kyung;Park, Chan-Ryang
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.833-838
    • /
    • 2012
  • The thermal degradation products of polytrimethylene terephthalate (PTT) obtained by heating the sample in the temperature range of $250-360^{\circ}C$ under non-oxidative conditions was characterized using MALDI-TOF (matrix assisted laser desorption/ionization) mass spectrometry. The structures of the degradation products were determined and the relative compositions were estimated. The MALDI-TOF mass spectra of the thermally degraded PTT sample showed three main series of oligomer products with different end groups, which were carboxyl/carboxyl, carboxyl/allyl, and allyl/allyl. In contrast to the thermal degradation of polyethylene terephthalate (PET), the oligomers containing terephthalic anhydrides were not detected, whereas the formation of oligomers containing the unsaturated allyl ester group was confirmed by mass assignment. From these results, it was concluded that the thermal degradation of PTT proceeds exclusively through the ${\beta}$-CH hydrogen transfer mechanism, which is in accordance with the proposed reaction mechanism for the thermal degradation of polybutylene terephthalate (PBT).

A Study on the Thermal Cycling Effect on the Hydrogenation Kinetics of Mg2Cu (Mg2Cu 수소저장합금의 thermal cycling 효과에 관한 연구)

  • Han, Jeong-Seb
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.2 no.1
    • /
    • pp.69-75
    • /
    • 1990
  • The effect of thermal cycling on the hydrogenation characteristics of the $Mg_2Cu-H$ system was investigated in order to study of intrinsic degradation of the system. The hydrogen storage capacity decreased with thermal cycling from $573^{\circ}K$ to $663^{\circ}K$. By the thermal analysis it is found that stable $MgH_2$ hydride is formed during thermal cycling. With a heat treatment at $693^{\circ}K$ at a hydrogen pressure of 16 atm, the hydrogenation rate drastically decreased. From these observation, it suggested that the intrinsic degradation of $Mg_2Cu$ system results from mainly the formation of stable $MgH_2$ hydride phase.

  • PDF

Enhanced Expression of Glucose 2-Oxidase in Phlebia tremellosa by Addition of Phthalates

  • Kim, Baik-Joong;Kim, Hye-Won;Choi, Hyoung-T.
    • Mycobiology
    • /
    • v.39 no.1
    • /
    • pp.64-66
    • /
    • 2011
  • Most fungi possess several hydrogen peroxide-generating enzymes, glucose oxidase and pyranose oxidase. Pyranose oxidase can use glucose as its substrate to generate hydrogen peroxide. White rot fungi, which degrade diverse recalcitrant compounds, contain lignin-degrading enzymes, and lignin peroxidase and manganese peroxidase require hydrogen peroxide for their enzymatic reactions. In this study, we isolated a cDNA fragment of pyranose oxidase from Phlebia tremellosa using PCR and examined its expression under the degradation conditions of diethylphthalate (DEP). Pyranose oxidase expression was enhanced up to 30% by the addition of DEP, and this result supports the possible involvement of pyranose oxidase in the degradation of recalcitrant compounds.

Initial Performance Degradation of Hydrogen-Fueled Ceramic Fuel Cell with Plasma-Enhanced Atomic Layer-Deposited Ultra-Thin Electrolyte (플라즈마 원자층증착 초박막전해질 수소 세라믹연료전지의 초기성능 저하)

  • JI, SANGHOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.5
    • /
    • pp.340-346
    • /
    • 2021
  • The initial electrochemical performance of ceramic fuel cell with thin-film electrolyte fabricated by plasma-enhanced atomic layer deposition method was evaluated in terms of peak power density ratio, open circuit voltage ratio, and activation/ohmic resistance ratios at 500℃. Hydrogen and air were used as anode fuel and cathode fuel, respectively. The peak power density ratio reduced as ~52% for 30 min, which continually decreased as time increased but degradation rate gradually decreased. The open circuit voltage ratio decreased with respect time; however, its behavior was evidently different from the reduction behavior of the peak power density. The activation resistance ratio increased as ~127% for 30 min, which was almost similar with the reduction behavior of the peak power density ratio.

Mass Production of Mg based Hydrogen Absorbing Alloys and Evalution of Hydrogenation and Degradation Properties by Hydriding/Dehydriding Cyclic Test (교반관법에 의한 Mg 기지 수소저항합금의 대량제조와 반복적 수소화 반응에 따른 수소화 특성 및 열화특성 평가)

  • Ha, Won;Lee, Sung-Gon;Hong, Tae-Whan;Kim, Young-Jig
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.1
    • /
    • pp.13-23
    • /
    • 2002
  • Hydrogenation properties of Mg-Ni and Mg-Ti-Ni alloys were investigated by Pressure-Composition Isotherm (PCI) test. Those alloys were fabricated by a new alloying method, Rotation-Cylinder Method (RCM). The as-cast microstructure of Mg-10 mass% Ni alloy consists of an island-like hydride forming $\alpha$-Mg phase and the eutectic structure. After 350 cyclic tests, Mg-lO mass % Ni alloy was pulverized into fine particles of 100 nm. The fine particles, which have a large specific surface area, are highly reactive with hydrogen. However, extreme pulvehzation can separate Mg from $Mg_2Ni$ in the eutectic structure, so $Mg_2Ni$ of the eutectic structure cannot behave as a dissociated hydrogen supplier.

Dye Decomposition in Seawater using Electro-Fenton Reaction (전기-펜톤 반응을 이용한 해수 중의 염료 분해)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.29 no.4
    • /
    • pp.383-393
    • /
    • 2020
  • To increase electrolysis performance, the applicability of seawater to the iron-fed electro-Fenton process was considered. Three kinds of graphite electrodes (activated carbon fiber-ACF, carbon felt, graphite) and dimensionally stable anode (DSA) electrode were used to select a cathode having excellent hydrogen peroxide generation and organic decomposition ability. The concentration of hydrogen peroxide produced by ACF was 11.2 mg/L and those of DSA, graphite, and carbon felt cathodes were 12.9 ~ 13.9 mg/L. In consideration of durability, the DSA electrode was selected as the cathode. The optimum current density was found to be 0.11 A/㎠, the optimal Fe2+ dose was 10 mg/L, and the optimal ratio of Fe2+ dose and hydrogen peroxide was determined to be 1:1. The optimum air supply for hydrogen peroxide production and Rhodamine B (RhB) degradation was determined to be 1 L/min. The electro-Fenton process of adding iron salt to the electrolysis reaction may be shown to be more advantageous for RhB degradation than when using iron electrode to produce hydrogen peroxide and iron ion, or electro-Fenton reaction with DSA electrode after generating iron ions using an iron electrode.

Physicochemical Properties and Antioxidant Effects of Fucoidans Degraded by Hydrogen Peroxide under Electron Beam at Various Irradiation Doses

  • Jeong, Gyeong-Won;Choi, Yoo-Sung
    • Applied Chemistry for Engineering
    • /
    • v.33 no.3
    • /
    • pp.322-327
    • /
    • 2022
  • Fucoidans were degraded by hydrogen peroxide under the electron beam (2.5 MeV) with various radiation doses (5 kGy, 10 kGy, 15 kGy, and 20 kGy) at room temperature. The degradation property was analyzed with a gel permeation chromatography (GPC-MALLS) method. An average molecular weight of fucoidan decreased from 99,956 at the irradiation dose of 0 kGy to 6,725 at the irradiation dose of 20 kGy. The solution viscosity of fucoidans showed a similar pattern to the molecular weight change. The number of chain breaks per molecule (N) increased with increasing the irradiation dose and concentration of hydrogen peroxide. The radiation yield of scission value markedly increased with increasing the irradiation dose up to 15 kGy. Also a 10% hydrogen peroxide concentration was more efficient than that of 5%. The structures of degraded fucoidan samples were studied with Fourier transform infrared spectroscopy (FT-IR). The results showed that the degradation process did not significantly change the chemical structure or the content of sulfate group. The sulfur content of each sample was determined with an Elemental Analyzer. With increasing the concentration of hydrogen peroxide, the ratios of sulfur/carbon, hydrogen/carbon, and nitrogen/carbon slightly decreased. The antioxidant activities of fucoidans were investigated based on hydroxyl radical scavenging activities. The ability of fucoidan to inhibit the hydroxyl radical scavenging activity was depended on its molecular weight.