• Title/Summary/Keyword: Hydrogen cost

Search Result 374, Processing Time 0.024 seconds

An Economic Analysis of the Hydrogen Station Enterprise Considering Dynamic Utilization (동적 이용률을 고려한 수소충전소 사업의 경제성 분석)

  • GIM, BONGJIN
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.1
    • /
    • pp.47-55
    • /
    • 2017
  • This paper deals with the after-tax economic feasibility analysis of the hydrogen fueling station considering dynamic utilization. We selected an off-site hydrogen station in which the hydrogen is supplied by a central by-product hydrogen plant as a case study. Also, we made some sensitivity analysis by changing input factors such as the discount rate, the hydrogen station construction cost, the hydrogen demand and the hydrogen sale price. As a result, the hydrogen station will not be economical in 2020 due to the relatively high price of the hydrogen station construction cost and the low price of hydrogen sale price. In order to realize the economic feasibility of the hydrogen station in the early stage of the hydrogen economy, the subsidies on the annual operating cost as well as the construction cost are needed.

Analysis of Hydrogen Production Cost by Production Method for Comparing with Economics of Nuclear Hydrogen (원자력 수소 경제성 비교를 위한 수소 생산 방법별 생산단가 분석)

  • Lim, Mee-Sook;Bang, Jin-Hwan;Yoon, Young-Seek
    • Journal of Hydrogen and New Energy
    • /
    • v.17 no.2
    • /
    • pp.218-226
    • /
    • 2006
  • It can be obtained from hydrocarbon and water, specially production of hydrogen from natural gas is most commercial and economical process among the hydrogen production methods, and has been used widely. However, conventional hydrogen production methods are dependent on fossil fuel such as natural gas and coal, and it may be faced with problems such as exhaustion of fossil fuels, production of greenhouse gas and increase of feedstock price. Thermochemical hydrogen production by nuclear energy has potential to efficiently produce large quantities of hydrogen without producing greenhouse gases. However, nuclear hydrogen must be economical comparing with conventional hydrogen production method. Therefore, hydrogen production cost was analyzed and estimated for nuclear hydrogen as well as conventional hydrogen production such as natural gas reforming and coal gasification in various range.

Preliminary Cost Estimates for Nuclear Hydrogen System Based on High Temperature Electrolysis (고온전기분해 이용 원자력수소 예비타당성 연구)

  • Yang, Kyeongjin;Lee, Taehoon;Lee, Kiyoung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.228.2-228.2
    • /
    • 2010
  • In this work, the hydrogen production costs of the nuclear energy sources are estimated in the necessary input data on a Korean specific basis. G4-ECONS was appropriately modified to calculate the cost for hydrogen production of HTE process with Very High Temperature nuclear Reactor (VHTR) as a thermal energy source rather than the LUEC (Levelized Unit Electricity Cost). The general ground rules and assumptions follow G4-ECONS. Through a preliminary study of cost estimates, we wished to evaluate the economic potential for hydrogen produced from nuclear energy, and, in addition, to promptly estimate the hydrogen production costs for an updated input data for capital costs. The estimated costs presented in this paper show that hydrogen production by the VHTR could be competitive with current techniques of hydrogen production from fossil fuels if $CO_2$ capture and sequestration is required. Nuclear production of hydrogen would allow large-scale production of hydrogen at economic prices while avoiding the release of $CO_2$. Nuclear production of hydrogen could thus become the enabling technology for the hydrogen economy. The major factors that would affect the cost of hydrogen were also discussed.

  • PDF

Economic Evaluation of Domestic Window Type Photoelectrochemical Hydrogen Production Utilizing Solar Cells (태양전지를 이용한 국내 Window Type 광전기화학 수소생산의 경제성 평가)

  • Gim, Bong-Jin;Kim, Jong-Wook
    • Journal of Hydrogen and New Energy
    • /
    • v.21 no.6
    • /
    • pp.595-603
    • /
    • 2010
  • This paper deals with an economic evaluation of domestic window type photoelectrochemical hydrogen production utilizing solar cells. We make some sensitivity analysis of hydrogen production prices by changing the values of input factors such as the initial capital cost, the solar to hydrogen conversion efficiency, and the system duration time. The hydrogen production price of the window type photoelectrochemical system was estimated as 1,168,972 won/$kgH_2$. It is expected that hydrogen production cost can be reduced to 47,601 won/$kgH_2$ if the solar to hydrogen conversion efficiency is increased to 14%, the system duration time is increased to 20,000 hours, and the initial capital cost is decreased to 25% of the current level. We also evaluate the hydrogen production cost of the water electrolysis using the electricity produced by solar cells. The corresponding hydrogen production cost was estimated as 37,838 won/$kgH_2$. The photoelectrochemical hydrogen production is evaluated as uneconomical at this time, and we need to enhance the solar to hydrogen conversion efficiency and the system duration time as well as to reduce prices of the system facilities.

Preliminary cost estimation for large-scale nuclear hydrogen production based on SI process (초고온가스원자로 열원 SI 공정을 이용한 원자력수소생산시스템 비용 예비 분석)

  • Yang, Kyoung-Jin;Choi, Jae-Hyuk;Lee, Ki-Young;Lee, Tae-Hoon;Lee, Kyoung-Woo;Kim, Mann-Eung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.723-726
    • /
    • 2009
  • As a preliminary study of cost estimates for nuclear hydrogen systems, the hydrogen production costs of the nuclear energy sources benchmarking GT-MHR are estimated in the necessary input data on a Korean specific basis. G4-ECONS developed by EMWG of GIF in 2008 was appropriately modified to calculate the cost for hydrogen production of SI process with VHTR as a thermal energy source rather than the LUEC. The estimated costs presented in this paper show that hydrogen production by the VHTR could be competitive with current techniques of hydrogen production from fossil fuels if $CO_2$ capture and sequestration is required. Nuclear production of hydrogen would allow large-scale production of hydrogen at economic prices while avoiding the release of $CO_2$. Nuclear production of hydrogen could thus become the enabling technology for the hydrogen economy. The major factors that would affect the cost of hydrogen were also discussed.

  • PDF

Techno-Economic Analysis of Green Hydrogen Production System Based on Renewable Energy Sources (재생에너지 기반 그린 수소 생산 시스템의 기술 경제성 분석)

  • PARK, JOUNGHO;KIM, CHANG-HEE;CHO, HYUN-SEOK;KIM, SANG-KYUNG;CHO, WON-CHUL
    • Journal of Hydrogen and New Energy
    • /
    • v.31 no.4
    • /
    • pp.337-344
    • /
    • 2020
  • Worldwide, there is a significant surge in the efforts for addressing the issue of global warming; the use of renewable energy is one of the solutions proposed to mitigate global warming. However, severe volatility is a critical disadvantage, and thus, power-to-gas technology is considered one of best solutions for energy storage. Hydrogen is a popular candidate from the perspective of both environment and economics. Accordingly, a hydrogen production system based on renewable energy sources is developed, and the economics of the system are assessed. The result of the base case shows that the unit cost of hydrogen production would be 6,415 won/kg H2, with a hydrogen production plant based on a 100 MW akaline electrolyzer and 25% operation rate, considering renewable energy sources with no electricity cost payment. Sensitivity study results show that the range of hydrogen unit cost efficiency can be 2,293 to 6,984 Won/kg H2, depending on the efficiency and unit cost of the electrolyzer. In case of electrolyzer operation rate and electricity unit cost, sensitivity study results show that hydrogen unit cost is in the range 934-26,180 won/kg H2.

Techno-Economic Analysis of Water Electrolysis System Connected with Photovoltaic Power Generation (태양광 발전 연계 수전해 시스템의 경제성 분석)

  • HWANG, SUNCHEOL;PARK, JIN-NAM
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.6
    • /
    • pp.477-482
    • /
    • 2021
  • Hydrogen production, hydrogen production cost, and utilization rate were calculated assuming four cases of hydrogen production system in combination of photovoltaic power generation (PV), water electrolysis system (WE), battery energy storage system (BESS), and power grid. In the case of using the PV and WE in direct connection, the smaller the capacity of the WE, the higher the capacity factor rate and the lower the hydrogen production cost. When PV and WE are directly connected, hydrogen production occurs intermittently according to time zones and seasons. In addition to the connection of PV and WE, if BESS and power grid connection are added, the capacity factor of WE can be 100%, and stable hydrogen production is possible. If BESS is additionally installed, hydrogen production cost increases due to increase in Capital Expenditures, and Operating Expenditure also increases slightly due to charging and discharging loss. Even in a hydrogen production system that connects PV and WE, linking with power grid is advantageous in terms of stable hydrogen production and improvement of capacity factor.

Economic Analysis and Comparison between Low-Power and High-Power SOEC Systems (저출력 및 고출력 SOEC 시스템의 경제성 분석 비교)

  • TUANANH BUI;YOUNG SANG KIM;DONG KEUN LEE;KOOK YOUNG AHN;YONGGYUN BAE;SANG MIN LEE
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.6
    • /
    • pp.707-714
    • /
    • 2022
  • Hydrogen production using solid oxide electrolysis cells (SOEC) is a promising technology because of its efficiency, cleanness, and scalability. Especially, high-power SOEC system has received a lot of attention from researchers. This study compared and analyzed the low-power and high-power SOEC system in term of economic. By using revenue requirement method, levelized cost of hydrogen (LCOH) was calculated for comparison. In addition, the sensitivity analysis was performed to determine the dependence of hydrogen cost on input variables. The results indicated that high-power SOEC system is superior to a low-power SOEC system. In the capital cost, the stack cost is dominant in both systems, but the electricity cost is the most contributed factor to the hydrogen cost. If the high-power SOEC system combines with a nuclear power plant, the hydrogen cost can reach 3.65 $/kg when the electricity cost is 3.28 ¢/kWh and the stack cost is assumed to be 574 $/kW.

An Economic Analysis for Establishing a Hydrogen Supply Plan in the Metropolitan Area (수도권 수소 공급 계획 수립을 위한 사전 경제성 분석)

  • PARK, HYEMIN;KIM, SUHYUN;KIM, BYUNGIN;LEE, SEUNGHUN;LEE, HYEJIN;YOO, YOUNGDON
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.3
    • /
    • pp.183-201
    • /
    • 2022
  • In this study, economic feasibility analysis was performed when various hydrogen production and transport technologies were applied to derive hydrogen supply plans by period. The cost of hydrogen may vary depending on several reasons; configuration of the entire cycle supply path from production, storage/transportation, and utilization to the cost that can be supplied to consumers. In this analysis, the hydrogen supply price according to the hydrogen supply route configuration for each period was analyzed for the transportation hydrogen demand in metropolitan area, where the demand for hydrogen is expected to be the highest due to the expansion of hydrogen supply.

Economic Evaluation of Domestic Photoelectrochemical Hydrogen Production (국내 광전기화학 수소생산의 경제성 평가)

  • Gim, Bong-Jin;Kim, Jong-Wook
    • Journal of Hydrogen and New Energy
    • /
    • v.21 no.1
    • /
    • pp.64-71
    • /
    • 2010
  • This paper deals with an economic evaluation of domestic immersing type photoelectrochemical hydrogen production. We also make some sensitivity analysis of hydrogen production prices by changing the values of input factors such as the initial capital cost, the solar to hydrogen conversion efficiency, and the system duration time. The hydrogen production price of the immersing type photoelectrochemical system was estimated as 8,264,324 won/$kgH_2$. It is expected that the production cost by photoelectrochemical hydrogen production can be reduced to 26,961 won/$kgH_2$ if the solar to hydrogen conversion efficiency is increased to 14%, the system duration time is increased to 20,000 hours, and the initial capital cost is decreased to 10% of the current level. The photoelectrochemical hydrogen production is evaluated as uneconomical at this time, and we need to enhance the solar to hydrogen conversion efficiency and the system duration time as well as to reduce prices of the system facilities.