• Title/Summary/Keyword: Hydrogen compression system

검색결과 49건 처리시간 0.019초

DME를 연료로 하는 압축 착화 엔진용 고압연료 펌프의 성능 비교 연구 (A Comparative Study on the Performance of High Pressure Fuel Pumps for Compression Ignition Engines Fueled by DME)

  • 정재희;조원준;임옥택
    • 한국수소및신에너지학회논문집
    • /
    • 제34권1호
    • /
    • pp.59-68
    • /
    • 2023
  • In this study, the performance of high-pressure fuel pumps was compared to find a high-pressure pump suitable for dimethyl ether (DME) fuel, and to establish a database of basic data on flow rates. The use of DME in compression ignition engines can reduce pollutant emissions. The cetane value of DME is higher than that of diesel fuel. The physical properties of DME are similar to liquefied gasoline gas (LPG), and when pressurized at a pressure of 6 bar or more, it changes from gas to liquid. Two types of high pressure pumps used in this study were independent injection type pump and a wobble plate type pump. Two high-pressure pumps with different injection types were compared. By measuring and comparing the performance changes of the two high-pressure pumps, a pump suitable for DME was selected and performance improvement measures were proposed. The changed experimental conditions to measure the performance change of the high pressure pump were increased in the units of 100 to 1,000 rpm and 100 rpm, and the experiment was performed at common rail pressures 300 and 400 bar. it was confirmed that the DME inside the fuel supply system remained in a liquid state through temperature sensors, pressure sensors, and pressure gauges. As a result of the experiment, it was confirmed that the flow rate discharged from the high-pressure fuel pump increased as the motor rotational speed increased, and the flow rate of the high-pressure fuel pump

고밀도 폴리우레탄 폼의 극저온 성능 분석 (Investigation of the Cryogenic Performance of the High Density Polyurethane Foam)

  • 김정현;김정대;김태욱;김슬기;이제명
    • 한국산업융합학회 논문집
    • /
    • 제26권6_3호
    • /
    • pp.1289-1295
    • /
    • 2023
  • Polyurethane foam insulation required for storing and transporting cryogenic liquefied gas is already widely used as a thermal insulation material for commercial LNG carriers and onshore due to its stable price and high insulation performance. These polyurethane foams are reported to have different mechanical performance depending on the density, and the density parameter is determined depending on the amount of the blowing agent. In this study, density-dependent polyurethane foam was fabricated by adjusting the amount of blowing agent. The mechanical properties of polyurethane foam were analyzed in the room temperature and cryogenic temperature range of -163℃ at 1.5 mm/min, which is a quasi-static load range, and the cells were observed through microstructure analysis. The characteristics of linear elasticity, plateau, and densification, which are quasi-static mechanical behaviors of polyurethane foam, were shown, and the correlation between density and mechanical properties in a cryogenic environment was confirmed. The correlation between mechanical behavior and cell size was also analyzed through SEM morphology analysis. Polyurethane foam with a density of 180 kg/m3 had a density about twice as high as that of a polyurethane foam with a density of 96 kg/m3, but yield strength was about 51% higher and cell size was about 9.5% smaller.

$CO_2$ 단열 모세관내 유동 특성 (Flow Characteristics in an Adiabatic Capillary Tube of Carbon Dioxide)

  • 노건상;손창효
    • 한국수소및신에너지학회논문집
    • /
    • 제19권6호
    • /
    • pp.537-544
    • /
    • 2008
  • In this paper, flow characteristics of an adiabatic capillary tube in a transcritical $CO_2$ have been investigated employing the homogeneous model. The model is based on fundamental equations of mass, energy and momentum which are solved simultaneously. Two friction factors(Churchill) and viscosity(McAdams) are comparatively used to investigate the flow characteristics. Supercritical and subcritical thermodynamic and transport properties of $CO_2$ are calculated employing EES property code. Flow characteristics analysis of $CO_2$ adiabatic capillary tube is presented to offer the basic design data for the operating parameters. The operating parameters considered in this study include inlet temperature and pressure of an adiabatic capillary tube, evaporating temperature and inner diameter tube. The main results were summarized as follows : inlet temperature and pressure of an adiabatic capillary tube, evaporating temperature, mass flowrate and inner diameter of $CO_2$ adiabatic capillary tube have an effect on length of an adiabatic capillary tube.

수소스테이션용 유압 압축기 개발 (Development of Hydraulic Compressor for Hydrogen Station)

  • 조성민;노경길;염지웅;이승국;류성기
    • 한국기계가공학회지
    • /
    • 제17권6호
    • /
    • pp.158-163
    • /
    • 2018
  • Major producers have already built compressors since World War I and have been monopolizing all domestic and overseas markets based on the accumulated technology, and the dependency of the manufacturers over the entire industry is deepening. Therefore, it is expected that the technological gap with developed countries will be larger without development of the related technology. Therefore, it is necessary to develop a unique technology for a new type of high efficiency compression system. In this study, we present localization of Hydraulic Compressor which can meet the technical trends such as cost reduction, efficiency improvement, environmental friendliness, wide operating range, low capacity / high capacity compatibility, size reduction, easy operation and easy maintenance.

수소-천연가스 혼합연료 엔진의 삼원촉매 전환효율 특성 연구 (A Study on the Characteristic of Conversion Efficiency for Three-way Catalyst in Hydrogen-Natural Gas Blend Fueled Engine)

  • 박철웅;이의형;김창기;이장희
    • 한국가스학회지
    • /
    • 제20권6호
    • /
    • pp.23-30
    • /
    • 2016
  • 천연가스를 이용한 기존 엔진들은 효율이 우수한 희박연소를 구현하였지만 배기가스의 정화성능이 점차 강화되는 배기규제에 대응하기 위해, 이론공연비 연소 방식으로 관심이 옮겨지고 있다. 이론공연비 연소 방식은 유해 배출가스의 정화효율이 높은 삼원촉매를 사용할 수 있는 장점이 있지만, 높은 연소열 발생에 따른 열 내구성 문제와 연비가 해결과제로 남아 있다. 천연가스에 수소를 혼합한 수소-천연가스 혼합연료(HCNG))는 수소의 빠른 연소속도에 의한 영향으로 연소속도가 증가하고, 희박한계가 증가하여 배기가스재순환(Exhaust gas recirculation; EGR) 률의 공급을 증가할 수 있다. EGR률 상승은 연소온도를 낮추게 되어 엔진 열 내구성에 긍정적인 영향을 줄 수 있고, 압축비를 더욱 증가 시킬 수 있어서 효율적인 연소조건을 형성하도록 도움을 줄 수 있다. 본 연구에서는 기존 대형 가스엔진을 이용하여 개발한 이론공연비 연소 방식의 HCNG 엔진의 배출가스 저감을 최소화하기 위해, 삼원촉매를 개발 및 적용하여 배기가스 특성을 평가하고 분석하고자 하였다. 현재 상용화된 시내버스용 삼원촉매와 HCNG용으로 개발 중인 시제 삼원촉매를 각각 설치하여 정상상태 운전조건 및 과도운전조건에서 실험을 진행하고 모드실험 결과를 비교하였다.

HCNG 충전 시스템 공정모사 (Process Simulation of HCNG Refueling System)

  • 김상민;한정옥;이영철;이중성;김용철;채정민;홍성호
    • 한국가스학회지
    • /
    • 제17권5호
    • /
    • pp.1-7
    • /
    • 2013
  • 수소와 압축천연가스가 30 : 70비율로 혼합되는 HCNG 공급 시스템의 공정모사를 수행하였다. 수소 생산은 천연가스로부터 수증기 개질 공정을 이용하는 방법이며, 수증기 개질반응기 운전조건으로 SCR은 증가할수록 천연가스의 전환율은 증가하지만 SCR이 3이상부터는 큰 차이가 없었고, GHSV는 증가할수록 연료처리량이 증가하지만 전환율은 감소하여 $1700h^{-1}$일 때 전환율 및 연료처리량이 최적상태가 되었다. CNG는 저압 천연가스가로부터 압축되어 공급되는 시스템이다. 혼합용 수소와 천연가스는 고압상태에서 HCNG로 혼합된다. 수소와 천연가스는 각각 400 bar와 250 bar의 고압으로 압축된다. 고압압축을 위해 단일압축보다 압축소요동력이 적게 사용되는 다단 압축을 사용하였다. 수소와 천연가스압축에 각각 사용된 압축기들의 압축 총 소요 동력을 최소화하는 중간 설정압력으로 각각 61 bar, 65 bar의 중간압력을 도출하였다.

LNG 냉열을 이용한 냉장·냉동 창고 모사에 관한 연구 (A Study of Simulation on the Refrigerated Warehouse System Based on the Cold Energy of Lng Using the Pro-Ii Simulator)

  • 한단비;김윤지;염규인;신재린;백영순
    • 한국수소및신에너지학회논문집
    • /
    • 제28권4호
    • /
    • pp.401-406
    • /
    • 2017
  • When Liquified Natural Gas (LNG) is vaporized into NG for industrial and household usage, tremendous cold energy was transferred from LNG to seawater during phase-changing process. This heat exchanger loop is not only a waste of huge cold energy, but will cause thermal pollution to the coastal fishery area also when cold water was re-injected into the sea. In this study, an innovation design has been performed to reclaim the cold energy for -35 to $62^{\circ}C$ refrigerated warehouse. Conventionally, this was done by installing mechanical refrigeration systems, necessitating tremendous electrical power to drive temperature. A closed loop LNG heat exchangers in series was designed to replace the mechanical or vapor-compression refrigeration cycle by process simulator. The process simulation software of PRO II with provision has been used to simulate this process for various conditions, what to effect on cold energy and used energy for re-liquefaction and evaporation process. In addition, through analysis the effect of the change of LNG supply pressure on sensible and latent heat, optimum operational conditions was suggested for LNG cold energy warehouse.

LNG 냉열활용을 위한 열교환기의 배열 형태가 냉동창고 성능에 미치는 연구 (Effect of the Array Type of Heat Exchangers on Performance of Refrigerated Warehouse for Utilization of LNG Cold Energy)

  • 한단비;김윤지;변현승;백영순
    • 한국수소및신에너지학회논문집
    • /
    • 제30권3호
    • /
    • pp.282-288
    • /
    • 2019
  • When liquefied natural gas (LNG) is vaporized to form natural gas for industrial and household consumption, a tremendous amount of cold energy is transferred from LNG to seawater as a part of the phase-change process. This heat exchange loop is not only a waste of cold energy, but causes thermal pollution to coastal fishery areas by dumping the cold energy into the sea. This project describes an innovative new design for reclaiming cold energy for use by cold storage warehouses (operating in the 35 to $62^{\circ}C$ range). Conventionally, warehouse cooling is done by mechanical refrigeration systems that consume large amounts of electricity for the maintenance of low temperatures. Here, a closed loop LNG heat exchange system was designed (by simulator) to replace mechanical or vapor-compression refrigeration systems. The software PRO II with PROVISION V9.4 was used to simulate LNG cold energy, gas re-liquefaction, and the vaporized process under various conditions. The effects on sensible and latent heats from changes to the array type of heat exchangers have been investigated, as well as an examination of the optimum.

A study on Production of Al Foam by Using of Al Return Scrap for Sound and Vibration Absorption Materials

  • Hur, Bo-Young;Kim, Sang-Youl;Park, Dae-Chol;Jeon, Sung-Hwan;Park, Chan-Ho;Yoon, Ik-Sub
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 The 6th International Symposium of East Asian Resources Recycling Technology
    • /
    • pp.198-201
    • /
    • 2001
  • Porous structures of aluminum foam have been studied by using return aluminum scrap. The apparent foam shape, foam height, density, pore size and their distributions in various section areas of the experimental samples have been investigated. The sample have been cast into metallic mold, using aluminum foam prepared from a precursor based on pure Al ingot and return aluminum scrap mixed with various amounts of 1-2wt% increasing viscosity and foam agent materials. The process provides for flexibility in design of foam structures via relatively easy control over the amount of hydrogen evolution and the drainage processes which occur during foam formation. This is facilitated by manipulating parameters such as the foaming agent, thermal histories during solidification and mix melt viscosities. A metal for producing the foamed are decomposing a foaming agent in a molten metal such that there is an initial and a subsequent expansion due to foaming agent. It has been found that the Al porous foaming with variation amount of 1∼2wt% foam agent and at 2min holding time, which melting temperature has appeared homogeneous pore size at 650∼700$^{\circ}C$. The compression strength were 10-13 kg/min at 125ppi, and increased by higher pore density. The acoustical performance of the panel made with the foamed aluminum is considerably improved; its absorption coefficient shows NRC 0.6-0.8. It has been found that the Al foam is very preferable for the compactness of the thermal system.

  • PDF