• Title/Summary/Keyword: Hydrogen charging time

Search Result 60, Processing Time 0.022 seconds

Effect of Hydrogen Charging Time and Tensile Loading Speed on Tensile Properties of 304L Stainless Steels

  • Hwang, SeungKuk;Lee, Sangpill;Lee, Jinkyung;Bae, Dongsu;Lee, Moonhee;Nam, Seunghoon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.1
    • /
    • pp.11-20
    • /
    • 2019
  • This study dealt with the tensile strength characteristics of stainless steel 304L steel by hydrogen charging. Especially, the effect of hydrogen charging time on the tensile strength and ductility of 304L stainless steels was evaluated, in conjunction with the observation of their fracture surfaces. The tensile properties of hydrogen-charged 304L stainless steels were also investigated with the variation of tensile loading speeds. The hydrogen amount of 304L stainless steels obviously increased with the increase of hydrogen charging time. The tensile properties of 304L stainless steels were clearly affected by the short term charging of hydrogen. In particular, the elongation of 304L stainless steels decreased with increasing hydrogen charging time, due to the hydrogen embrittlement. It was also found that the tensile properties of hydrogen-charged 304L stainless steels were very sensitive to the crosshead speed for tensile loading.

Application of Nondestructive Technique on Hydrogen Charging Times of Stainless Steel 304L (스테인리스 304L강의 수소장입시간에 대한 비파괴기법 적용)

  • Lee, Jin-Kyung;Hwang, Seung-Kuk;Lee, Sang-Pill;Bae, Dong-Su;Son, Young-Seok
    • Journal of Power System Engineering
    • /
    • v.19 no.5
    • /
    • pp.60-66
    • /
    • 2015
  • Embrittlement of material by hydrogen charging should be cleared for safety of storage vessel of hydrogen and components deal with hydrogen. A stainless steel is generally used as materials for hydrogen transportation and storage, and it has a big advantage of corrosion resistance due to nickel component in material. In this study, microscopic damage behavior of stainless steel according to the hydrogen charging time using nondestructive evaluation was studied. The surface of stainless steel became more brittle as the hydrogen charging time increased. The parameters of nondestructive evaluation were also changed with the embrittlement of stainless steel surface by hydrogen charging. Ultrasonic test, which is the most generalized nondestructive technique, was applied to evaluate the relationship between the ultrasonic wave and mechanical properties of stainless steel by hydrogen charging. The attenuation coefficient of ultrasonic wave was increased with hydrogen charging time because of surface embrittlement of stainless steel. In addition, acoustic emission test was also used to study the dynamic behavior of stainless steel experienced hydrogen charging. AE event at the hydrogen charged specimen was obviously decreased at the plastic zone of stress-strain curves, while the number of event for the specimen of hydrogen free was dramatically generated when compared with the specimens underwent hydrogen charging.

A Study on Analysis of Operation Data Monitoring Based on Demonstration of Hydrogen Refueling Station (수소 복합스테이션 실증기반 운영데이터 모니터링 분석 연구)

  • KIM, DONG-HWAN;PARK, SONG-HYUN;KU, YEON-JIN;KIM, PIL-JONG;HUH, YUN-SIL
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.6
    • /
    • pp.505-512
    • /
    • 2019
  • According to the "hydrogen economy roadmap" announced recently by the government, fuel cell electric vehicle diffusion and hydrogen refueling station construction are actively being carried out to prepare for the hydrogen economy era. The station will be expanded by introducing various charging station models such as hydrogen complex charging station, package, and mobile. Accordingly, the study on the safety demonstration of the charging station and related regulations should be compromised. The purpose of this study is to collect monitoring data during charging according to the distinct four seasons in Korea, and to use it as safety demonstration data by analyzing the charging status, charging rate and charging time during charging.

The Change of Microstructures According to the Charging Amounts of Hydrogen in High Strength DP Steels and TRIP Steel (고강도 DP강과 TRIP강의 표면 수소 주입량에 따른 수소취성평가)

  • Lee, Chul-Chi;Park, Jae-Woo;Kang, Kae-Myung
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.3
    • /
    • pp.130-135
    • /
    • 2012
  • Hydrogen charging was electrochemically conducted at high strength DP steels and TRIP steel with varying charging time. The penetration depths and the mechanical properties with charging conditions were investigated through the distribution of micro-hardness and the microstructural observation of the subsurface zone. The micro-Vickers hardness was measured to evaluate the hydrogen embrittlement of subsurface zone in addition to the microscope investigation. It was shown that the hydrogen amounts decreased in DP steels and TRIP steel with increasing hydrogen charging time. As shown by micro-Vickers hardness test and small punch test results, micro-Vickers hardness and SP energy for DP steels and TRIP steel decreased with increasing hydrogen charging time, for constant value of charging current density. SEM investigation results for the hydrogen contained samples showed that the major fracture behavior was brittle fracture which results in dimples on fractured surface and the size of dimples were decreased with increasing hydrogen charging time. These results indicate that hydrogen embrittlement is the major cause for the fracture of high strength steels and also micro-Vickers hardness test and small punch test is a valuable test method for hydrogen embrittlement of high strength sheet steels.

Evaluation of Hydrogen Embrittlement of High Strength Steel for Automobiles by Small Punch Test (소형펀치시험을 이용한 자동차용 고강도강 수소취성 평가)

  • Park, Jae-Woo;Kang, Kae-Myung
    • Korean Journal of Materials Research
    • /
    • v.22 no.1
    • /
    • pp.29-34
    • /
    • 2012
  • The hydrogen embrittlement of high strength steel for automobiles was evaluated by small punch (SP) test. The test specimens were fabricated to be 5 series, having various chemical compositions according to the processes of heat treatment and working. Hydrogen charging was electrochemically conducted for each specimen with varying of current density and charging time. It was shown that the SP energy and the maximum load decreased with increasing hydrogen charging time in every specimen. SEM investigation results for the hydrogen containing samples showed that the fracture behavior was a mixed fracture mode having 50% dimples and 50% cleavages. However, the fracture mode of specimens with charging hydrogen changed gradually to the brittle fracture mode, compared to the mode of other materials. All sizes and numbers of dimples decreased with increasing hydrogen charging time. These results indicate that hydrogen embrittlement is the major cause of fracture for high strength steels for automobiles; also, it is shown that the small punch test is a valuable test method for hydrogen embrittlement of high strength sheet steels for automobiles.

Effect of Hydrogen Charging on the Mechanical Properties of 304 Stainless Steels

  • Lee, Sang-Pill;Hwang, Seung-Kuk;Lee, Jin-Kyung;Son, In-Soo;Bae, Dong-Su
    • Journal of Power System Engineering
    • /
    • v.19 no.5
    • /
    • pp.73-79
    • /
    • 2015
  • The effects of hydrogen charging on the mechanical properties of 304 stainless steels were investigated in conjunction with the detailed examinations of their fracture modes. The dependence of the absorbed impact energy and the surface hardness of the 304 stainless steels on the hydrogen charging time was characterized. The tensile properties of the 304 stainless steels by the variation of cross-head speed were also evaluated at the room temperature. The hydrogen charging was performed by an electrolysis method for all specimens of the 304 stainless steels. The mechanical properties of the 304 stainless steels exhibited the sensitivity of embrittlement due to a hydrogen charging. The correlation between mechanical properties and fracture surfaces was discussed.

The Effect of Hydrogen on the Variation of Properties at the Surface Layers of 590 MPa DP Steels Charged with Hydrogen (수소장입시킨 590 MPa DP강의 표면층 물성변화에 관한 수소의 영향)

  • Choi, Jong-Un;Park, Jae-Woo;Kang, Kae-Myung
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.3
    • /
    • pp.126-132
    • /
    • 2013
  • It was investigated that the effects of hydrogen charging on the properties of 590 MPa Dual Phase(DP) steels at the surface layers. The hydrogen-charging time was changed from 5 to 50 hours and current densities from 100, 150, and 200 $mA/cm^2$, respectively. It was found that the hydrogen content in the specimen was increased with as the charging time and the current density. The microvickers hardness of the subsurface zone was increased from 215.3 HV to 239.5 HV due to the increase in current density and charging time. The comparison of the absorbed energies tested by a small-punch (SP) test showed that the absorbed energy of the specimen was greatly reduced from 436 to 283 $kgf-mm^2$ because of hydrogen embrittlement. It was confirmed that bulb aspects of fracture surface became more brittle with increasing hydrogen content.

Hydrogen Embrittlement Evaluation of Subsurface Zone in 590DP Steel by Micro-Vickers Hardness Measurement (미소경도 측정에 의한 590DP강 Subsurface Zone 내 수소취성 평가)

  • Choi, Jong-Un;Park, Jae-Woo;Kang, Kae-Myung
    • Korean Journal of Materials Research
    • /
    • v.21 no.11
    • /
    • pp.581-586
    • /
    • 2011
  • This study describes a hydrogen embrittlement evaluation of the subsurface zone in 590DP steel by micro-Vickers hardness measurement. The 590DP steel was designed to use in high-strength thin steel sheets as automotive materials. The test specimens were fabricated to 5 series varying the chemical composition through the process of casting and rolling. Electrochemical hydrogen charging was conducted on each specimen with varying current densities and charging times. The relationship between the embrittlement and hydrogen charging conditions was established by investigating the metallography. The micro-Vickers hardness was measured to evaluate the hydrogen embrittlement of the subsurface zone in addition to the microscopic investigation. The micro-Vickers hardness increased with the charging time at the surface. However, the changing ratio and maximum variation of hardness with depth were nearly the same value for each test specimen under the current density of 150 mA/$cm^2$ and charging time of 50 hours. Consequently, it appears that hydrogen embrittlement in 590DP steel can be evaluated by micro-Vickers hardness measurement.

The Influence of Hydrogen Charging with the Volume Fraction of Phases in Dual Phase Steels (다상조직강의 조직 분율에 따른 수소주입의 영향)

  • Kim, Han-Sang;Kang, Kae-Myung
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.6
    • /
    • pp.284-288
    • /
    • 2012
  • A study on microstructure control of multi-phase steel have been implemented to higher strength with improved formability. However, it is well known that the high strength of steel are susceptible to hydrogen embrittlement. The mechanisms of hydrogen embrittlement is caused by complex interactions. In this paper, the test specimens were fabricated to 5 type of 590DP steels at different levels of volume faction. The hydrogen charging was conducted by electrochemical hydrogen-charge method with varying charging time. The relationship between hydrogen concentration and volume fraction of 590DP steel was established by SP test and SEM-fractography. It was shown that the hydrogen amounts charged in 590DP steels increased with increasing the volume faction of austenite. The maximum loads of the 590DP steels in SP test were sharply decreased with increasing hydrogen charging time. The results of SEM-fractography investigation showed typical brittle-fracture surfaces for hydrogen-charged 590DP steels.

Study on the Hydrogen Delayed Fracture Property of TRIP Steel by Slow Strain Rate Testing Method (일정 변형률 시험에 의한 TRIP강의 수소 지연파괴 특성연구)

  • Cho, J.H.;Lee, J.K.
    • Corrosion Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.131-135
    • /
    • 2011
  • The demands of high-strength steel have been steadily increased to reduce the weight of vehicles. Although the TRIP steel has been the promising candidate material for the purpose, high strength hinders the application due to the susceptibility to hydrogen delayed fracture in the corrosive environment. Moreover, the testing method was not specified in the ISO standards. In this work, the test method to evaluate the susceptibility of hydrogen delayed fracture was studied by slow strain rate testing technique. The four test experimental parameters were studied : strain rate, hydrogen charging time, holding time after hydrogen charging, and holding time after cadmium plating. The steel was fractured by hydrogen in case the strain rate was in the range of $1{\times}10^{-4}{\sim}5{\times}10^{-7}/sec$. It was confirmed that the slow strain rate test is effective method to evaluate the susceptibility to hydrogen delayed fracture. The holding time over 24 hrs after hydrogen charging, nullified the hydrogen effect, that is, the specimen was no more susceptible to hydrogen after 24 hrs even though the specimen was fully hydrogen-charged. Moreover, cadmium electroplating could not prevent from diffusing out the hydrogen from the steel in the experiment. The effective experimental procedures were discussed.