• Title/Summary/Keyword: Hydrogen absorption-desorption

Search Result 62, Processing Time 0.024 seconds

Change of Electrical Resistivity of PdH film as a Function of Film Thickness (수소흡수시 Pd 박막 시료의 두께 변화에 따른 전기저항의 변화)

  • Cho, Young-sin
    • Journal of Hydrogen and New Energy
    • /
    • v.10 no.3
    • /
    • pp.171-175
    • /
    • 1999
  • Pd films($180{\sim}670{\AA}$ thick) were made by thermal evaporation. Electrical resistance of the films was measured during hydrogen absorption-desorption process at room temperature. Resistance changes as a function of hydrogen pressure in thin films of the PdH system show a strong dependence on film thickness. $({\Delta}R_{\infty}/R_0)_{{\beta}min}$ for a $\670{\AA}$ film is 0.61. For a $\180{\AA}$ film, this is 0.34. Resistance change also depends on sample preparation condition.

  • PDF

Trend in Research and Development of Lithium Complex Hydrides for Hydrogen Storage (리튬계 수소저장재료의 연구개발 동향)

  • Shim, Jae-Dong;Shim, Jae-Hyeok;Ha, Heon-Phil
    • Korean Journal of Materials Research
    • /
    • v.22 no.3
    • /
    • pp.159-167
    • /
    • 2012
  • Hydrogen is in the spotlight as an alternative next generation energy source for the replacement of fossil fuels because it has high specific energy density and emits almost no pollution, with zero $CO_2$ emission. In order to use hydrogen safely, reliable storage and transportation methods are required. Recently, solid hydrogen storage systems using metal hydrides have been under extensive development for application to fuel cell vehicles and fuel cells of MCFC and SOFC. For the practical use of hydrogen on a commercial basis, hydrogen storage materials should satisfy several requirements such as 1) hydrogen storage capacity of more than 6.5wt.% $H_2$, moderate hydrogen release temperature below $100^{\circ}C$, 3) cyclic reversibility of hydrogen absorption/desorption, 4) non toxicity and low price. Among the candidate materials, Li based metal hydrides are known to be promising materials with high practical potential in view of the above requirements. This paper reviews the characteristics and recent R&D trends of Li based complex hydrides, Li-alanates, Li-borohydrides, and Li-amides/imides.

Surface Reactions of Atomic Hydrogen with Ge(100) in Comparison with Si(100)

  • Jo, Sam Keun
    • Applied Science and Convergence Technology
    • /
    • v.26 no.6
    • /
    • pp.174-178
    • /
    • 2017
  • The reactions of thermal hydrogen atoms H(g) with the Ge(100) surface were examined with temperature-programmed desorption (TPD) mass spectrometry. Concomitant $H_2$ and $CH_4$ TPD spectra taken from the H(g)-irradiated Ge(100) surface were distinctly different for low and high H(g) doses/substrate temperatures. Reactions suggested by our data are: (1) adsorbed mono(${\beta}_1$)-/di-hydride(${\beta}_2$)-H(a) formation; (2) H(a)-by-H(g) abstraction; (3) $GeH_3$(a)-by-H(g) abstraction (Ge etching); and (4) hydrogenated amorphous germanium a-Ge:H formation. While all these reactions occur, albeit at higher temperatures, also on Si(100), H(g) absorption by Ge(100) was not detected. This is in contrast to Si(100) which absorbed H(g) readily once the surface roughened on the atomic scale. While this result is rather against expectation from its weaker and longer Ge-Ge bond as well as a larger lattice constant, we attribute the absence of direct H(g) absorption to insufficient atomic-scale surface roughening and to highly efficient subsurface hydrogenation at moderate (>300 K) and low (${\leq}300K$) temperatures, respectively.

Hydrogen Permeation Properties of Ni-based Amorphous Alloys Membrane (Ni-based 비정질 합금막의 수소투과 특성)

  • Seok, Song;Lee, Dock-Young;Kim, Yoon-Bae
    • Journal of Hydrogen and New Energy
    • /
    • v.19 no.1
    • /
    • pp.35-40
    • /
    • 2008
  • Ni-based amorphous alloy ribbon was prepared by a single-roller melt-spinning technique. Palladium coating was found to enhance significantly the absorption/desorption behavior of hydrogen in amorphous alloy. The hydrogen permeability of a Pd-coated $(Ni_{60}Nb_{40}){_{100-X}}$TaX(x=5, 10) amorphous alloy was examined in the temperature range of $623{\sim}773K$, comparable with those of $Pd_{60}-Cu_{40}$ alloys. The permeated hydrogen flux was increased with increasing the temperature and the difference of hydrogen pressure between the feed side and permeates side of the membrane. The Ni-based amorphous alloys were characterized by X-ray diffractometry(XRD) and differential scanning calorimetry(DSC). The morphology of surface and roughness was observed by using scanning electron microscopy(SEM) and atomic force microscopy(AFM).

A Study on the Electrochemical Characteristics of Hydrogen Storage Alloy Electrodes for Secondary Batteries (축전지용 수소저장합금 전극의 전기화학적 특성에 관한 연구)

  • KIM, Chan-Jung;LEE, Jae-Myoung;CHOI, Byung-Jin;KIM, Dai-Ryong
    • Journal of Hydrogen and New Energy
    • /
    • v.4 no.2
    • /
    • pp.29-40
    • /
    • 1993
  • Intensive studies on the electrochemical characteristics of TiFe type alloy electrodes have been carried out to clarify the mechanism of electrochemical hydrogen absorption and desorption. It was found that electrochemical activation of the TiFe type alloys is difficult and that charge efficiencies are very low even after a decade of activation cycles. However, by the pretreatment of the powders such as gas activation and/or Ni chemical plating, charge efficiencies fairly increased, especially for the $TiFe_{0.8}Ni_{0.2}$ alloy. It was considered that difficulties to activation and lower charge efficies of the alloys are due to the presence of the passivation films, which prohibit inward diffusion of hydrogen and promote the combination of adsorbed hydrogen atom to gas bubbles during the electrochemical charge. In addition, lower diffusivity of hydrogen in the alloys may be played an important role lowering the charge efficiencies.

  • PDF

Improving Reproducibility of Coercivity of HDDR-treated Nd-Fe-B-type Material by Controlling Hydrogen Decrepitation (수소파쇄 제어를 통한 HDDR 처리한 Nd-Fe-B계 재료의 보자력 재현성 향상)

  • Kim, Kyung Min;Kim, Ja Young;Kwon, Hae-Woong;Lee, Jeong Gu;Yu, Ji Hun
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.4
    • /
    • pp.111-116
    • /
    • 2015
  • Practical difficulty in the HDDR (hydrogenation - disproportionation - desorption - recombination) processing of Nd-Fe-B-type alloy is a poor reproducibility of coercivity of the HDDR-treated material. In an attempt to improve the reproducibility of coercivity of the HDDR-treated $Nd_{12.5}Fe_{80.6}B_{6.4}Ga_{0.3}Nb_{0.2}$ alloy, the hydrogen decrepitation was carefully controlled so as to induce more extensive micro-cracks in the particle. Prior to the hydrogenation and disproportionation reaction of HDDR processing, an additional hydrogen degassing was carried out at an elevated temperature of $600^{\circ}C$ under vacuum for the previously hydrogen decrepitated particle. During the additional hydrogen degassing the lattice of hydrogen absorbed $Nd_2Fe_{14}B$ phase was further shrunken, hence more microcracks were introduced in the particle due to its brittle nature. Particles with more micro-cracks had more homogeneous hydrogen absorption and desorption reaction during the HDDR-treatment. The improved reproducibility of coercivity of the HDDR-treated material was attributed to the improved homogeneity of the HDDR reactions due to the presence of more micro-cracks.

The Evaluation of Hydrogenation Properties on $MgH_x-Fe_2O_3$ Composite by Mechanical Alloying (기계적 합금화법으로 제조된 $MgH_x-Fe_2O_3$ 복합재료의 수소화 특성 평가)

  • Seok, Song;Cho, Kyoung-Won;Hong, Hae-Whan
    • Journal of Hydrogen and New Energy
    • /
    • v.18 no.1
    • /
    • pp.26-31
    • /
    • 2007
  • Hydrogen has a high potential to be a renewable substitute for fossil fuels, because of its high gravimetric energy density and environment friendliness. In particular, Magnesium have attracted much interest since their hydrogen capacity exceeds that of known metal hydrides. One of the approaches to improve the kinetic is addition of metal oxide. In this paper, the effect of $Fe_2O_3$ concentration on the kinetics of Mg hydrogen absorption reaction was investigated. $MgH_x-Fe_2O_3$ composites have been synthesized by hydrogen induced mechanical alloying. The powder synthesized was characterized by XRD, SEM and simultaneous TG, DSC analysis. The hydrogenation behaviors were evaluated by using a sievert's type automatic PCT apparatus. Absorption and desorption kinetics of Mg catalyzed with 5,10 mass% $Fe_2O_3$ are determined at 423, 473, 523, 573, 623K.

A Study on the Hydriding Reaction Characteristics and the Change of the Hydriding Reaction Rates of MmNi4.5Al0.5 during Temperature-Induced Cycling (MmNi4.5Al0.5의 수소화 반응특성 및 Temperature-Induced Cycling에 따른 수소화 반응속도의 변화에 관한 연구)

  • Kim, Soo-Ryoung;Lee, Jai-Young
    • Journal of Hydrogen and New Energy
    • /
    • v.1 no.1
    • /
    • pp.1-8
    • /
    • 1989
  • The hydriding kinetic mechanism and the change of the hydriding reaction rate of $MmNi_{4.5}Al_{0.5}$ during the thermally induced hydrogen absorption-desorption cycling are investigated. Comparison of the reaction rate data which are obtained by the pressure sweep method with the theoretical rate equations suggests that the hydriding rate controlling step has changed from the dissociative chemisorption of hydrogen molecules at the surface to the hydrogen diffusion through the hydride phase with the increase of the hydriding fraction. These hydriding kinetic mechanism is not changed during the cycling. However, the intrinsic hydriding reaction rate of $MmNi_{4.5}Al_{0.5}$ after 5500 cycles increases significantly comparing with the activated one. It is suggested that the change of the hydriding kinetic behavior due to intrinsic degradation of $MmNi_{4.5}Al_{0.5}$ can be interpreted as follows ; the formation of nickel cluster at the surface of the sample and the host metal atom exchange in bulk by thermal cycling.

  • PDF

Characterization of Carbon Nanofiber Electrode with different Ketjenblack Conducting Material Mixing Amount Using EDLC (Ketjenblack 전도제 혼합량에 따른 EDLC용 탄소나노섬유 전극의 특성)

  • Choi, Weon-Kyung
    • Journal of Hydrogen and New Energy
    • /
    • v.19 no.2
    • /
    • pp.163-170
    • /
    • 2008
  • Carbon nanofibers with nano-sized structures were evaluated as a active material using supercacitor electrode which could store electrochemical energy reversibly. A feasibility of EDLC electrode was estimated with specific surface area measurement by BET method and mesopore structure of carbon nanofiber surface could be explained electrochemical absorption-desorption in aqueous electrolyte. A capacitance of carbon nanofiber electrode was increased gradually, depending on the ratio of Ketjenblack as a conducting material. Ketjen Black $20{\sim}25\;wt.%$ ratio in electrode was observed a suitable amount of conducting material by cyclic voltametry results.

Electrochemical Properties of Carbon Nanofiber Electrode with Different PVDF Binder Concentration (PVDF 접합제 농도 변화와 탄소나노섬유 전극의 전기화학적 특성)

  • Choi, Weon-Kyung;Cho, Tae-Hwan
    • Journal of Hydrogen and New Energy
    • /
    • v.18 no.4
    • /
    • pp.446-451
    • /
    • 2007
  • Physicochemical properties of carbon nanofibers were evaluated as a supercacitor electrode materials could store electrochemical energy reversibly. A capacitance of carbon nanofiber electrode was increased gradually, depending on the PVDF binder ratio. A feasibility of EDLC electrode was estimated with specific surface area measurement by BET method and mesopore structure of carbon nanofiber surface could be explained electrochemical absorption-desorption in aqueous electrolyte. PVDF 5 wt.% ratio in electrode was observed a suitable binder amount by CV result.