In this work, we prepared the Ni-loaded porous SBA-15 (SBA-15) by a depositionprecipitation (D-P) method, in order to enhance the hydrogen storage capacity. The structure and morphology of the Ni/SBA-15 were characterized by X-ray diffraction (XRD) and field emission transmission electron microscopy (FE-TEM). The results showed that, at the Ni loading used at the DP times in the range of 0-120 min, SBA-15 preserved the well-ordered hexagonal porous arrangement. The textural properties of the Ni/SBA-15 were analyzed using N2 adsorption isotherms at 77 K. Specific surface area and mesopore volume of the samples were determined from the Brunauer-Emmett-Teller (BET) equation and Barrett-Joiner-Halenda (BJH) method, respectively. The hydrogen storage capacity of the Ni/SBA-15 was evaluated at 298 K/10 MPa. The hydrogen storage capacity of the Ni/SBA-15 was increased in accordance with Ni content. Consequently, it was found that the presence of Ni on mesoporous SBA-15 created hydrogen-favorable sites which enhanced the hydrogen storage capacity by spillover effect.
HEUNG SEOK SEO;YEONGBUM LEE;DONGHYUK KIM;CHANGWON PARK
Journal of Hydrogen and New Energy
/
v.34
no.6
/
pp.650-656
/
2023
In order to efficiently control boil-off rate of a liquefied hydrogen tank, the important thing is to maintain an appropriate vacuum level. however, compared to small and medium-sized storage tank, it is very difficult to create and maintain vacuum in large-capacity storage tanks. In this study, we aim to determine the target level of future large-capacity storage tank technology development and secure basic data on performance test methods by analyzing the corelation between evaporation gas and thermal conductivity of liquefied hydrogen storage tanks.
In this work, we prepared the activated multi-walled carbon nanotubes (Acti-MWNTs) with well developed physical surface structures, high specific surface area, and higher adsorption capacity by a physical activation process, in order to enhance the hydrogen storage capacity. The Acti-MWNTs' changes in the crystalline phase and in their lattice distortions were characterized by X-ray diffraction (XRD). The textural properties of the Acti-MWNTs were investigated by a nitrogen adsorption isotherms by Brunauer-Emmett-Teller (BET) equation and Harvath-Kawazoe (H-K) calculation, respectively. The hydrogen storage capacity of the Acti-MWNTs was investigated by BEL-HP at 298 K/100 bar. The hydrogen storage capacity of the Acti-MWNTs was improved with the physical activation, resulted from the formation of new hydrogen-favorable sites on the Acti-MWNT surfaces. In conclusion, the physical activation was one of the effective method to enhance the hydrogen storage capacity of the MWNTs.
Journal of the Korea Institute of Military Science and Technology
/
v.13
no.6
/
pp.1153-1171
/
2010
Hydrogen is the most abundant element in the universe. Although hydrogen can produce three times more energy than gasoline and seven times than coal, the most challenging problem in utilizing hydrogen as energy carrier is its storage problem. In contrast to the liquid hydrocarbon, hydrogen can not be stored or transported easily and safely because of its extremely low boiling point(21K). Recently scientists have made a tremendous achievement in storing hydrogen capacity in solid state materials such as carbon based and metal organic frameworks materials as well as metal hydrides. In this review the author reviewed the status of the hydrogen storage technologies in solid state, the advantages and disadvantages in each category of materials and the future prospects of hydrogen storage.
In this study, We had surface-treated single-walled carbon nanotubes (SWNTs) for improving hydrogen storage capacity. The SWNTs were treated by heat treatment, acid treatment and fluorinated at various temperatures. The SWNTs were characterized by Raman spectroscopy and TEM and estimated hydrogen storage capacities at 303K. As shown Raman spectra and TEM images, the structure of fluorinated SWNTs were stable at 423K but changed to the MWNTs-like structure or onion structure over 523K. Hydrogen storage capacity of SWNTs fluorinated at 423K was remarkably increased 2.6 times than that of pristine SWNTs. For SWNTs fluorinated at 573K, the amount of hydrogen adsorbed wasn't increased compared with SWNTs fluorinated at 423K. Therefore, high hydrogen storage capacity of SWNTs could be archived by fluorinated condition at 423K, which was not changed SWNT structure.
Journal of the Korea Institute of Military Science and Technology
/
v.15
no.4
/
pp.519-526
/
2012
Recently fuel cell is considered to be a new technology that can substitute the ICE(Internal Combustion Engine) as well as overcome environmental issues. In military applications, fuel cell has an unique advantages, which are quietness, namely, stealth. The environmental requirement such as shock and vibration in military application, however, is very severe comparing to civilian demand. Especially, the safety concerning hydrogen storage is the most important problem. Among the candidate methods to store hydrogen, the metal hydride storage is promising method owing to the storage mechanism of chemical absorption of hydrogen to metal hydrides. In this study, the new composition of Ti-Zr type metal hydride(A composition) was suggested and investigated to increase the hydrogen storage capacity. For comparison, the hydrogen charge-discharge properties were investigated with the commercialized Ti-Zr type metal hydride(B composition) using PCT(Pressure-Composition-Temperature) measurement. Also two hydrogen storage cylinders were loaded with each metal hydride and their hydrogen charging and discharging characteristics were investigated. As a result, it was found that the new Ti-Zr type metal hydride has a slightly higher hydrogen storage capacity compared to commercial Ti-Zr type metal hydride.
In order to improve the hydrogen storage capacity and the activation properties of the hydrogen storage alloys, the rare-earth metal alloy series, MmN $i_{4.5}$M $n_{0.5}$Z $r_{x}$(x=0, 0.025, 0.05, 0.1), are prepared by adding excess Zr in MmN $i_{4.5}$M $n_{0.5}$ alloy. The various parts in hydrogen storage vessel consisted of copper pipes reached the setting temperature within 4~5 minutes after heat addition, which indicated that storage vessel had a good heat conductivity required in application. The performance test on storage vessel filled with rare-earth metal alloys of 1000 gr was also conducted after hydrogen charging for 10 min at $18^{\circ}C$ under 10 atm. It showed that the average capacity of discharged hydrogen volume was found to be for $MmNi_{4.5}$$Mn_{0.5}$ and $MmNi_{4.5}$$Mn_{x}$ 0.5/$Zr_{samples}$ indicated that the released amount of hydrogen for this $AB_{5}$ type alloys was more than 92 % of theoretic value, and also it was found that the optimum discharging temperature for obtaining an appropriate pressure of 3 atm was determined to be $V^{\circ}C$ for $MmNi_{4.5}$$Mn_{0.5}$$Zr_{x}$(x=0, 0.025, 0.05, 0.1) hydrogen storage alloys. The released amount of these hydrogen storage samples was 125 $\ell$ , 122.4 $\ell$ and 108.15 $\ell$/kg for $MmNi_{4.5}$$Mn_{0.5}$$Zr_{0.025}$$MmNi_{4.5}$M $n_{0.5}$Z $r_{0.05}$, and MmN $i_{4.5}$ Mn_0.5$Zr_{0}$, at $70^{\circ}C$ respectively. Amount of the 2nd phases increase with increase on Zr contents in $MmNi_{4.5}$$Mn_{0.5}$$Zr_{ 0.1}$/ alloy. This phenomenon indicates that$ ZrNi_3$ in $MmNi_{4.5}$$Mn_{0.5}$$Zr_{x}$ / phase, which shows the maximum storage capacity and the strong resistance to intrinsic degradation, is considered as a proper alloy for hydrogen storage. As the Zr contents increase, the activation time and the plateau pressure decreases and sloping of the plateau pressure increases.creases.eases.s.
Kim, Wooyoung;Kim, Dongmin;Hong, Youngteak;Kang, Taegyun;Yi, Jongheop
Clean Technology
/
v.12
no.2
/
pp.107-111
/
2006
Two types of mesoporous carbons, CMK-3 and CMK-5, were prepared using mesoporous silica as a removable template, and their hydrogen storage capacities were evaluated. For the purpose of comparison, MWCNT (multi-walled carbon nanotubes) was selected and the adsorption of hydrogen was measured. The amount of hydrogen adsorbed on carbon materials was found to be closely related to the surface areas of carbon samples: The higher the surface area of the carbon material, the larger amount of hydrogen was adsorbed. The hydrogen storage capacity increased in the order of CMK-5 > CMK-3 > MWCNT. In addition, hydrogen storage capacity was greatly enhanced by the Pd-doping onto CMK-5. When the metallic Pd was doped on the carbon material, the adsorption amount of hydrogen via a hydrogen spill-over mechanism was crucial to the hydrogen storage capacity of Pd-doped CMK-5.
The alloys which compositions were represented by the formula, $Ti_{(0.22+X)}Cr_{(0.28+1.5X)}V_{(0.5-2.5X)}$ ($0{\leq}X{\leq}0.12$), had the total hydrogen storage capacity higher than 3 wt% and the effective hydrogen storage capacity higher than 1.4 wt%. Particularly, among all the tested alloys, the $Ti_{0.32}Cr_{0.43}V_{0.25}$ alloy exhibited the best effective hydrogen storage capacity of 1.65 wt%. Furthermore, the reversible bcc${\leftrightarrow}$fcc structural transition was observed with hydrogenation and dehydrogenation, which predicted the possibility of pressure cycling. EDS analysis revealed micro-segregation, which suggested the necessity of microstructure homogenization by heat treatment. The $Ti_{0.32}Cr_{0.43}V_{0.25}$ alloy was selected for heat treatment and for other related studies. The results showed that the total and the effective hydrogen storage capacity increased to 3.7 wt% and 2.3 wt%, respectively. The flatness of the plateau region was also greatly improved and heat of hydride formation was determined to be approximately -36 kJ/mol $H_2$.
A glucose hydrothermal method is described for preparing hollow carbon spheres (HCS), which have a regular morphology and a high Brunauer-Emmett-Teller surface area of 28.6 m2/g. Scanning electron microscopy shows that they have thin shells and diameter between 2 and 8 ${\mu}m$. The HCSs were modified for the enhanced room temperature hydrogen storage by employing Ni nanoparticles on their surface. The Ni-decorated HCSs were characterized by X-ray diffraction, transmission electron microscopy coupled with an energy dispersive spectroscope, and an inductively coupled plasma spectrometer, indicating that fine and well-distributed Ni nanoparticles can be accomplished on the HCSs. The hydrogen uptake capacity in HCSs with and without Ni loading was evaluated using a high-pressure microbalance at room temperature under a hydrogen pressure upto 9 MPa. As much as 1.23wt.% of hydrogen can be stored when uniformly distributed Ni nanoparticles are formed on the HCSs, while the hydrogen uptake capacity of as-received HCSs was 0.41 wt.%. For Ni nanoparticle-loaded HCSs, hydrogen molecules could be easily dissociated into atomic hydrogen and then chemically adsorbed by the sorbents, leading to an enhanced capacity for storing hydrogen.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.