• Title/Summary/Keyword: Hydrogen Storage alloys

Search Result 89, Processing Time 0.021 seconds

In-situ Observation of Hydride Stability of Vanadium Alloys in Electron Microscope

  • Ohnuki, S.;Takase, K.;Yashiki, K.;Hamada, K.;Suda, T.;Watanabe, S.
    • Applied Microscopy
    • /
    • v.36 no.spc1
    • /
    • pp.57-61
    • /
    • 2006
  • High-resolution microscopy was applied for surveying hydride stability in Vanadium alloys, which are candidate for hydrogen storage materials of advanced hydrogen energy systems. $V_2H$ hydride in V alloys was stable at room temperature under the vacuum condition, but it was decomposed during heating up to $100^{\circ}C$. It was confirmed from HRTEM image and FFT that $V_2H$ has a BCT structure, where hydrogen atoms locate at octahedral sites. Crystal orientation was <110> beta// <110> mat., and lattice strain is about 10%. After the decomposition of the hydride, relatively large lattice expansion was observed in the matrix, which suggests that hydrogen atoms should be trapped by lattice defects and included in the matrix. Intensive electron beam also enhanced the decomposition.

The Effect of Mechanical Grinding or Electrochemical Properties of $CaNi_5$ Hydrogen Storage Alloy ($CaNi_5$ 수소저장합금의 전기화학 특성에 미치는 MG 처리 효과)

  • Lee C. R.;Kang S. G.
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.2
    • /
    • pp.106-111
    • /
    • 1999
  • The effect of the MG on the electrochemical charge-discharge properties of $CaNi_5$ hydrogen storage alloys was investigated under Ar and $H_2$ atmosphere. $CaNi_5$ alloy was partially decomposed to CaO and Ni phase during the MG process. The decomposition of $CaNi_5$ alloy was enhanced by the MG process which leads to crash and reformation of oxide layer on the alloy surface. As the MG process time increased, initial discharge capacity of the electrode was reduced, but the decay rate of the capacity compared to $CaNi_5$ alloys was slower. It may be described that the degradation of $MG-CaNi_5$ electrode was caused by the reduction of the reversible hydrogen reaction sites and increasing polarization resistance of hydrogen adsorption resulted from phase decomposition and disorder during the MG process, and/or by hydroxide formation during the electrochemical charge-discharge cycles.

Study on the Cooling Mechanism in a Cryogenic Cooling System (극저온 냉각 챔버 내 냉각 메커니즘 연구)

  • SEONGWOO LEE;YOUNGSANG NA;YOUNGKYUN KIM;SEUNGMIN JEON;JUNHO LEE;SUNGWOONG CHOI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.2
    • /
    • pp.146-151
    • /
    • 2024
  • The demand for research on materials with excellent cryogenic strength and ductility has been increasing, particularly for applications such as liquid hydrogen (20 K) storage tanks. To effectively utilize liquid hydrogen, a system capable of maintaining and operating at 20 K is essential. Therefore, preliminary research and verification of the cooling system are crucial. In this study, a heat transfer analysis was conducted on a cooling system to meet the cryogenic environment requirements for cryogenic hydrogen chamber, which are conducted at liquid helium temperatures (4 K). The cooling mechanism in a helium cooling system was examined using numerical analysis. The numerical cooling trends were compared with experimentally obtained cooling results. The good agreement between numerical and experimental results suggests that the numerical approach developed in this study is applicable over a wide range of cryogenic systems.

Hydrogenation Study of Mg-based Alloys by mechanical Grinding Reaction for Hydrogen Storage of Fuel Cell (연료전지의 수소저장용 마그네슘계 합금의 기계적 분쇄 반응에 의한 수소화 특성 평가)

  • Kim, Ho-Sung;Suh, Hee-Seok;Cha, Jae-Sang
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.6
    • /
    • pp.69-74
    • /
    • 2006
  • The effects of mechanical grinding(MG) treatment on the hydrogen storage of $Mg_2Ni$ alloy and $Mg_2Ni$ composite alloy($Mg_2Ni+graphite$) were investigated by pressure-composition-temperature(PCT) measurement, the micro-electrode technique of electrochemistry and etc, in which PCT was measured at high temperature(around $300[^{\circ}C]$) of gas phase and a carbon-filament micro-electrode for electrochemical evaluation was manipulated to make electrical contact with the particle in 1M KOH aqueous solution. It was found that the hydrogenation properties of $Mg_2Ni$ and graphite composite particle were greatly improved by the mechanical grinding treatment by which the $Mg_2Ni$ and graphite composite alloys could be changed into microstructure and nano-level particles. namely; the hydrogen dissociation pressure of PCT measurement was decreased from 0.55[MPa] to 0.42[MPa] and hydrogenation peaks by micro-electrode were also observed more clearly on the same sample.

Electrode Characteristics of the (Mm)Ni5-Based Hydrogen Storage Alloys ((Mm)Ni5계 수소저장합금의 전극 특성)

  • Han, D.S.;Choi, S.J.;Chang, M.H.;Choi, J.;Park, C.N.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.6 no.1
    • /
    • pp.35-41
    • /
    • 1995
  • The MmNi-based alloy electrode was studied for use as a negative electrode in Ni-MH battery. Alloys with $MmNi_5-_xM_x$(M=Co,Al,Mn) composition were synthesized, and their electrode charateristics of activation rate, temperature dependence, electrode capacity and cycle life were investigated. With increasing Al content and decreasing Mn content in the alloys, the discharge capacity increased while the cycle life decreased. As x in $MmNi_5-_xM_x$ increased from 1.5 to 2.0, decreasing the Ni content, the discharge capacity, the low temperature property and the rate capability decreased. However its cycle life was improved. Increasing Co content resulted in a prolonged cycle life and decrease of high rate discharge capacity. It can be concluded that the most promising alloy in view of discharge capacity and cycle life is $MmNi_{3.5}Co_{0.7}Al_{0.5}Mn_{0.3}$.

  • PDF

Evaluations of Microstructure and Hydrogenation Properties on $Mg_2NiH_x$ ($Mg_2NiH_x$ 수소저장합금의 미세결정구조 및 수소화 특성평가)

  • Seok, Song;Shin, Kyung;Kweon, Soon-Yong;Ur, Soon-Chul;Lee, Young-Geun;Hong, Tae-Whan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.3
    • /
    • pp.238-243
    • /
    • 2005
  • Mg and Mg-based alloys are most important hydrogen storage materials. It is a lightweight and low-cost materials with high hydrogen storage capacity. However, the formation of hydride at high temperature, the deterioration effect, the hydriding and dehydriding kinetics are bad factor for application. In this study, Mg and Ni have been produced by hydrogen induced mechanical alloying(HIMA) process. The raw materials, Mg(purity 99.9%) chip and Ni(purity 99.95%) chip was prepared by using a planetary ball mill apparatus(FRITSCH pulverisette 5). The balls to chips mass ratio(BCR) are 30:1. The hydrogen pressure induced 2.0MPa and milling times were 12, 24, 48, 72, 96 hours with a rotating speed of 200rpm. X-ray diffraction(XRD) analysis was made to characterize the crystallite size and misfit strain. The crystallite size measured by laser particle size analysis(PSA). Microstructure changes were investigated by scanning electron microscopy(SEM) and the transmission electron microscopy(TEM). The hydrogen storage properties were evaluated by using an Sivert's type automatic pressure-composition-therm(PCT) apparatus.

Terminal solid solubility of hydrogen of optimized-Zirlo and its effects on hydride reorientation mechanisms under dry storage conditions

  • Kim, Ju-Seong;Kim, Tae-Hoon;Kim, Kyung-min;Kim, Yong-Soo
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1742-1748
    • /
    • 2020
  • TSSD, TSSP, and TSSP2 of hydrogen for optimized-Zirlo (Zirlo™) alloy were measured by DSC in the range of 53-457 wppm. Solvus curves of the TSSs are derived and proposed in this study. The results show that the temperature gap between TSSD and TSSP solvus lines of Zirlo™ are similar to those of other zirconium alloys, but another gap between the TSSD and TSSP2 line differs significantly. In particular, the TSSP2 solvus line becomes closer to the TSSD solvus line than to TSSP unlike Zircaloy-4, so ΔTTSSD-TSSP2 of Zirlo™ decreases with decreasing temperature. This implies that hydride reorientation can take place more significantly in Zirlo™ than in Zircaloy-4, and the limited temperature variation of 65 ℃ during the vacuum drying and the cooling-down process may not be sufficient to prevent the triggering of hydride reorientation in Zirlo™ cladding under long-term dry storage.

Analysis of CTOD Tests on Steels for Liquefied Hydrogen Storage Systems Using Hydrogen Charging Apparatus (수소 장입 장치를 활용한 액체수소 저장시스템 강재의 CTOD 시험 분석)

  • Ki-Young Sung;Jeong-Hyeon Kim;Jung-Hee Lee;Jung-Won Lee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.5
    • /
    • pp.875-884
    • /
    • 2023
  • Hydrogen infiltration into metals has been reported to induce alterations in their mechanical properties under load. In this study, we conducted CTOD (Crack Tip Opening Displacement) tests on steel specimens designed for use in liquid hydrogen storage systems. Electrochemical hydrogen charging was performed using both FCC series austenitic stainless steel and BCC series structural steel specimens, while CTOD testing was carried out using a 500kN-class material testing machine. Results indicate a notable divergence in behavior: SS400 test samples exhibited a higher susceptibility to failure compared to austenitic stainless steel counterparts, whereas SUS 316L test samples displayed minimal changes in displacement and maximum load due to hydrogen charging. However, SEM (Scanning Electron Microscopy) analysis results presented challenges in clearly explaining the mechanical degradation phenomenon in the tested materials. This study's resultant database holds significant promise for enhancing the safety design of liquid hydrogen storage systems, providing invaluable insights into the performance of various steel alloys under the influence of hydrogen embrittlement.

Study on the Improvement of the Electrochemical Characteristics of Surface-modified V-Ti-Cr alloy by Ball-milling

  • Kim, Jin-Ho;Lee, Sang-Min;Lee, Ho;Lee, Paul S.;Lee, Jai-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.12 no.1
    • /
    • pp.39-50
    • /
    • 2001
  • Vanadium based solid solution alloys have been studied as a potential negative electrode of Ni/MH battery due to their high hydrogen storage capacity. In order to improve the kinetic property of V-Ti alloy in KOH electrolyte, the ball-milling process with Ni, which has a catalytic effect of hydrogen absorption/desorption, was carried out to modify the surface properties of V-Ti-Cr alloys with high hydrogen storage capacity. Moreover, to overcome the problem of poor cycle life, V-Ti alloy substituted by Cr, V0.68 Ti0.20 Cr0.12, has been developed showing a good cycle performance (keeping about 80 % of initial discharge capacity after 200 cycles). The cycle life of surface-modified V0.68 Ti0.20 Cr0.12 alloy was improved by suppressing the formation of TiO2 layer on the alloy surface while decreasing the amount of dissolved vanadium in the KOH electrolyte. In order to promote the effect of Ni coating on the surface property of V0.68 Ti 0.20 Cr 0.12 alloy by ball-milling, filamentary-typed Ni, which has higher surface coverage area than sphere-typed Ni was used as a surface modifier. Consequently, the surface-modified V0.68 Ti0.20 Cr0.12 alloy electrode showed a improved discharge capacity of 460 mAh/g.

  • PDF

Fabrication and Evaluation of Hydorgenation Propeties on Mg8Ti2-(10, 20 wt.%)Ni Composites (Mg8Ti2-(10, 20 wt.%)Ni 수소저장합금의 제조 및 수소화 특성 평가)

  • Kim, Kyeong-Il;Hong, Tae-Whan
    • Korean Journal of Materials Research
    • /
    • v.20 no.10
    • /
    • pp.543-549
    • /
    • 2010
  • The hydrogen energy had recognized clean and high efficiency energy source. The research field of hydrogen energy was production, storage, application and transport. The commercial storage method was using high pressure tanks but it was not safety. However metal hydride was very safety due to high chemical stability. Mg and Mg alloys are attractive as hydrogen storage materials because of their lightweight and high absorption capacity (about 7.6 wt%). Their range of applications could be further extended if their hydrogenation properties and degradation behavior could be improved. The main emphasis of this study was to find an economical manufacturing method for Mg-Ti-Ni-H systems, and to investigate their hydrogenation properties. In order to examine their hydrogenation behavior, a Sievert's type automatic pressure-compositionisotherm (PCI) apparatus was used and experiments were performed at 423, 473, 523, 573, 623 and 673 K. The results of the thermogravimetric analysis (TGA) revealed that the absorbed hydrogen contents were around 2.5wt.% for (Mg8Ti2)-10 wt.%Ni. With an increasing Ni content, the absorbed hydrogen content decreased to 1.7 wt%, whereas the dehydriding starting temperatures were lowered by some 70-100 K. The results of PCI on (Mg8Ti2)-20 wt.%Ni showed that its hydrogen capacity was around 5.5 wt% and its reversible capacity and plateau pressure were also excellent at 623 K and 673 K.