• 제목/요약/키워드: Hydrogen Storage System

검색결과 219건 처리시간 0.03초

다공성 금속 촉매를 이용한 메틸사이클로헥산의 탈수소 반응 (Dehydrogenation of methylcyclohexane over porous metals)

  • 김종팔
    • 한국수소및신에너지학회논문집
    • /
    • 제15권2호
    • /
    • pp.152-158
    • /
    • 2004
  • Hydrogen has been considered as an important and essential future energy source. But the storage of the hydrogen is a difficult problem and many studies were focused on this matter. However, the MTH-system (methylcyclohexane, toluene, hydrogen) was proposed for storage of hydrogen by Taube et al. and that is the reaction of hydrogen with toluene to give methylcyclohexane. One toluene molecule can store six hydrogen atoms to form methylcyclohexane. In this form the hydrogen can be easily stored in liquid organic hydrides and transported at ambient pressure in tanks. Hence, this study is focused on the catalytic dehydrogenation of methylcyclohexane. Since supported platinum and nickel were employed as catalysts in literature, in this study, porous Pt and Ni were prepared and tested for the dehydrogenation reaction. When the porous Pt catalyst was applied to the dehydrogenation it showed higher activity in the reaction and higher selectivity to toluene. Specially at higher pressure, it showed almost 100 % conversion and 100 % selectivity and hence porous platinum could be considered as best for the given reaction.

수평식 이중원통형 ZrCo 용기 내 수소 흡탈장 및 열전달 모델링 (Hydrogen Absorption/Desorption and Heat Transfer Modeling in a Concentric Horizontal ZrCo Bed)

  • 박종철;이정민;구대서;윤세훈;백승우;정흥석
    • 한국수소및신에너지학회논문집
    • /
    • 제24권4호
    • /
    • pp.295-301
    • /
    • 2013
  • Long-term global energy-demand growth is expected to increase driven by strong energy-demand growth from developing countries. Fusion power offers the prospect of an almost inexhaustible source of energy for future generations, even though it also presents so far insurmountable scientific and engineering challenges. One of the challenges is safe handling of hydrogen isotopes. Metal hydrides such as depleted uranium hydride or ZrCo hydride are used as a storage medium for hydrogen isotopes reversibly. The metal hydrides bind with hydrogen very strongly. In this paper, we carried out a modeling and simulation work for absorption/desorption of hydrogen by ZrCo in a horizontal annulus cylinder bed. A comprehensive mathematical description of a metal hydride hydrogen storage vessel was developed. This model was calibrated against experimental data obtained from our experimental system containing ZrCo metal hydride. The model was capable of predicting the performance of the bed for not only both the storage and delivery processes but also heat transfer operations. This model should thus be very useful for the design and development of the next generation of metal hydride hydrogen isotope storage systems.

금속수소화물 수소 저장 용기 내부의 수소방출에 대한 수치해석적 연구 (Numerical Study of Hydrogen Desorption in a Metal Hydride Hydrogen Storage Vessel)

  • 강경문;남진무;유하늘;주현철
    • 한국수소및신에너지학회논문집
    • /
    • 제22권3호
    • /
    • pp.363-371
    • /
    • 2011
  • In this paper, a three-dimensional hydrogen desorption model is developed to precisely study the hydrogen desorption kinetics and resultant heat and mass transport phenomena in metal hydride hydrogen storage vessels. The metal hydride hydrogen desorption model, i.e. governed by the conservation of mass, momentum, and thermal energy is first experimentally validated against the temperature evolution data measured on a cylindrical $LaNi_5$ metal hydride vessel. The equilibrium pressure used for hydrogen desorption simulations is derived as a function of H/M atomic ratio and temperature based on the experimental data in the literature. The numerical simulation results agree well with experimental data and the 3D desorption model successfully captures key experimental trends during hydrogen desorption process. Both the simulation and experiment display an initial sharp decrease in the temperature mainly caused by relatively slow heat supply rate from the vessel external wall. On the other hand, the effect of heat supply becomes influential at the latter stages, leading to smooth increase in the vessel temperature in both simulation and experiment. This numerical study provides the fundamental understanding of detailed heat and mass transfer phenomena during hydrogen desorption process and further indicates that efficient design of storage vessel and heating system is critical to achieve fast hydrogen discharging performance.

소형 GM 냉동기를 이용한 수소 액화에 관한 시뮬레이션 연구 (A Simulation Study on the Hydrogen Liquefaction through Compact GM Refrigerator)

  • 정하늘;한단비;양원균;백영순
    • 한국수소및신에너지학회논문집
    • /
    • 제33권5호
    • /
    • pp.534-540
    • /
    • 2022
  • Liquid hydrogen has the best storage capacity per unit mass and is economical among storage methods for using hydrogen as fuel. As the demand for hydrogen increases, the need to develop a storage and supply system of liquid hydrogen is emphasizing. In order to liquefy hydrogen, it is necessary to pre-cool it to a maximum inversion temperature of -253℃. The Gifford-McMahon (GM) refrigerator is the most reliable and commercialized refrigerator among small-capacity cryogenic refrigerators, which can extract high-efficiency hydrogen through liquefied hydrogen production and boil of gas re-liquefaction. Therefore, in this study, the optimal conditions for liquefying gas hydrogen were sought using the GM cryocooler. The process was simulated by PRO/II under various cooling capacities of the GM refrigerator. In addition, the flow rate of hydrogen was calculated by comparing with specific refrigerator capacity depending on the pressure and flow rate of a refrigerant medium, helium. Simulations were performed to investigate the optimal values of the liquefaction flow rate and compression pressure, which aim for the peak refrigeration effect. Based on this, a liquefaction system can be selected in consideration of the cycle configuration and the performance of the refrigerator.

불화 처리된 AB$_2$계 수소저장합금의 전극특성에 관한 연구 (A Study on the Electrode Charcteristics of the Fluornated AB$_2$ Type Hydrogen Storage Alloys)

  • 박호영;이명호;조원일;조병래;이성래;주재백;윤경석
    • 한국표면공학회지
    • /
    • 제30권4호
    • /
    • pp.262-271
    • /
    • 1997
  • Nickel-matal hydride(Ni-MH) batteries are receiving attention as non-pollunting. high performance rehargeable energy stoage system. The performance of Ni-Mh is significantly influenced by the hydrogen storage alloy materiels used as an anode material. Recently, having discharge capacities higher than the $AB_5$-type hydrogen storage alloys, the Zr-based $AB_2$-Type hydrogen storage alloys has remaining problems regarding cycle life and self-dischareg. These problems need to be solved by improvements in the alloy design and/or surface treatment. This work investiggates the effects the effects of surface property by fluorination on $Zr_{0.7}Ti_{0.3}V_{0.4}Mn_{0.4}Ni{1.2}$ composittion $AB_2$-Type hydrogen storage alloys. EPMA, SEM and AES techniques were used for surface analysis, and the crystal structure was characterized by constant current cycling test and potential sweep methods. Fluorination was found to be effective when La-was incorporated into the alloy, and has unique morphology, higher reactivity, and at the same time formed a protective film. Through, fluorination, the cycle life of an electrode was found to increase significantly, charge/discharge characteristics of the electrode the potential difference between the charge/discharge plateau, i.e polarization(overpotential)were improved.

  • PDF

The hydrogen storage capacity of metal-containing polyacrylonitrile-based electrospun carbon nanofibers

  • Bai, Byong-Chol;Kim, Jong-Gu;Naik, Mehraj-Ud-Din;Im, Ji-Sun;Lee, Young-Seak
    • Carbon letters
    • /
    • 제12권3호
    • /
    • pp.171-176
    • /
    • 2011
  • Polyacrylonitrile-based carbon nanofibers (CNFs) containing Ti and Mn were prepared by electrospinning. The effect of metal content on the hydrogen storage capacity of the nanofibers was evaluated. The nanofibers containing Ti and Mn exhibited maximum hydrogen adsorption capacities of 1.6 and 1.1 wt%, respectively, at 303 K and 9 MPa. Toward the development of an improved hydrogen storage system, the optimum conditions for the production of metalized CNFs were investigated by characterizing the specific surface areas, pore volumes, sizes, and shapes of the fibers. According to the results of Brunauer-Emmett-Teller analysis, the activation of the CNFs using potassium hydroxide resulted in a large pore volume and specific surface area in the samples. This is attributable to the optimized pore structure of the metal-containing polyacrylonitrile-based electrospun CNFs, which may provide better sites for hydrogen adsorption than do current adsorbates.

에너지 저장 시스템 (ESS)용 배터리의 운전조건에 따른 성능 저하 및 태양광 연계형 ESS 모니터링 연구 (Performance Degradation of a Battery in an Energy Storage System (ESS) under Various Operating Conditions and Monitoring Study of ESS Connected with Photovoltaic)

  • 정윤이;정한주;정연기;이재영;이홍기
    • 한국수소및신에너지학회논문집
    • /
    • 제25권3호
    • /
    • pp.311-318
    • /
    • 2014
  • Performance degradation of a battery in 20 kWh energy storage system (ESS) under various operating conditions was studied. And energy saving of the ESS was also monitored by connecting with 20 kW photovoltaic (PV). PV-connected ESS saved 5~7% of energy consumption in 2013 compared to that without such system in 2012. As charge-discharge cycle increased, capacity decreased and the performance degradation was glaringly obvious after 40 cycles. And as charge and discharge rate increased, the performance degradation was more serious. After 50 charge-discharge cycles, a lot of degraded product was deposited on the surface of anode and cathode electrodes, and the cathode side was more contaminated. Therefore, in order to maintain the cell performance, it was more important to protect the degradation of the cathode side.

수소 버스 용기용 수소 투과량 측정 시스템의 신뢰성 평가 연구 (Reliability Evaluation Study of a Hydrogen Permeation Measurement System for 175 L Hydrogen Bus Vessels)

  • 양현석;전호병;이동훈;공만식
    • 자동차안전학회지
    • /
    • 제16권1호
    • /
    • pp.49-54
    • /
    • 2024
  • This paper provides an analysis of the experimental procedures and results to ensure the reliability of the system manufactured for testing the hydrogen permeability of a 175 L compressed hydrogen container for a hydrogen bus. Based on the hydrogen permeability standard of 6 cc/(h·L), it was injected into the permeability test chamber at 10% intervals, and the permeated hydrogen concentration according to the injected amount was measured and compared with the actual amount of hydrogen permeated. As a result of the experiment, the measured value represented 96.34% of the actual permeation amount, which can be used as basic data for the hydrogen bus vessel permeability test system being built in Korea.

Ni/MH 2차 전지용 고용량 Ti계 수소저장합금의 설계에 관한 연구 (A Study on the Alloy Design of High Capacity Ti-Based Metal Hydride for Ni/MH Rechargeable Battery)

  • 이한호;이재영
    • 한국수소및신에너지학회논문집
    • /
    • 제7권1호
    • /
    • pp.19-28
    • /
    • 1996
  • Ti-Mn based hydrogen storage alloy were modified by substituting alloying elements such as Zr, V and Ni in order to design a high capacity MH electrode for Ni/MH rechargeable battery. When V was substituted in Ti-Mn binary system, the crystal structure was maintained as $Cl_4$ Laves phase at a composition of $Ti_{0.2}V_{0.4}Mn_{0.4}$ and $Ti_{0.4}V_{0.2}Mn_{0.4}$ and equilibrium pressure decreased below 1 atm without decreasing hydrogen storage capacity considerably. It was found that Ni should be included in Ti-V-Mn alloy in order to hydrogenate it electrochemically in KOH electrolyte. But substitution of Ni for Mn in Ti-V-Mn system caused the increase of equilibrium pressure above 1atm and decrease of hydrogen storage capacity. Zr was able to increase the reversible hydrogen storage capacity of Ti-V-Mn-Ni alloy without considerable change of hydrogenation properties. The electrochemical discharge capacity of Ti-Zr-V-Mn-Ni system were in the range of 350 - 464mAh/g and among them $Ti_{0.8}Zr_{0.2}V_{0.5}Mn_{0.5}Ni_{1.0}$ alloy had $Cl_4$ Laves single phase and very high electrochemical discharge capacity of 464mAh/g.

  • PDF

폐스팀을 이용한 가역 고체산화물 연료전지의 기술적 경제적 해석 (Techno-Economic Analysis of Reversible Solid Oxide Fuel Cell System Couple with Waste Steam)

  • 잡반티엔;이영덕;김영상;안국영
    • 한국수소및신에너지학회논문집
    • /
    • 제30권1호
    • /
    • pp.21-28
    • /
    • 2019
  • Reversible solid oxide fuel cell (ReSOC) system was integrated with waste steam for electrical energy storage in distributed energy storage application. Waste steam was utilized as external heat in SOEC mode for higher hydrogen production efficiency. Three system configurations were analyzed to evaluate techno-economic performance. The first system is a simple configuration to minimize the cost of balance of plant. The second system is the more complicated configuration with heat recovery steam generator (HRSG). The third system is featured with HRSG and fuel recirculation by blower. Lumped models were used for system performance analyses. The ReSOC stack was characterized by applying area specific resistance value at fixed operating pressure and temperature. In economical assessment, the levelized costs of energy storage (LCOS) were calculated for three system configurations based on capital investment. The system lifetime was assumed 20 years with ReSOC stack replaced every 5 years, inflation rate of 2%, and capacity factor of 80%. The results showed that the exergy round-trip efficiency of system 1, 2, 3 were 47.9%, 48.8%, and 52.8% respectively. The high round-trip efficiency of third system compared to others is attributed to the remarkable reduction in steam requirement and hydrogen compression power owning to fuel recirculation. The result from economic calculation showed that the LCOS values of system 1, 2, 3 were 3.46 ¢/kWh, 3.43 ¢/kWh, and 3.14 ¢/kWh, respectively. Even though the systems 2 and 3 have expensive HRSG, they showed higher round-trip efficiencies and significant reduction in boiler and hydrogen compressor cost.