• Title/Summary/Keyword: Hydrogen Station

Search Result 225, Processing Time 0.024 seconds

A Machine Learning based Methodology for Selecting Optimal Location of Hydrogen Refueling Stations (수소 충전소 최적 위치 선정을 위한 기계 학습 기반 방법론)

  • Kim, Soo Hwan;Ryu, Jun-Hyung
    • Korean Chemical Engineering Research
    • /
    • v.58 no.4
    • /
    • pp.573-580
    • /
    • 2020
  • Hydrogen emerged as a sustainable transport energy source. To increase hydrogen utilization, hydrogen refueling stations must be available in many places. However, this requires large-scale financial investment. This paper proposed a methodology for selecting the optimal location to maximize the use of hydrogen charging stations. The location of gas stations and natural gas charging stations, which are competing energy sources, was first considered, and the expected charging demand of hydrogen cars was calculated by further reflecting data such as population, number of registered vehicles, etc. Using k-medoids clustering, one of the machine learning techniques, the optimal location of hydrogen charging stations to meet demand was calculated. The applicability of the proposed method was illustrated in a numerical case of Seoul. Data-based methods, such as this methodology, could contribute to constructing efficient hydrogen economic systems by increasing the speed of hydrogen distribution in the future.

Pressure Drop Analysis on Filling of Hydrogen Fuel Cell Vehicles (수소연료전지 차량 충전에서의 압력강하 분석)

  • Hyo Min Seo;Byung Heung Park
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.1
    • /
    • pp.38-47
    • /
    • 2023
  • In the hydrogen filling process, hydrogen flows by the pressure difference between the supply pressure at a filling station and a storage tank in the vehicle, and the flow rate depends on the pressure difference. Therefore, it is essential to consider the pressure drop of hydrogen occurring during the filling process, and the efficiency of the hydrogen filling process can be improved through its analysis. In this study, the pressure drop was analyzed for a hose, a nozzle/receptacle coupling, a pipe, and a valve in a filling line. The pressure drops through hose and pipe, the nozzle,receptacle coupling, and the valve were calculated by using a equation for a straight conduit, a flow nozzle formula, and a gas flow respectively. In addition, as a result of comprehensive analysis of the pressure drop effect occurring in each component, it was found that the factor that has the greatest influence on the pressure drop in the entire filling line is the pressure drop through the valve. This study can be used to develop a model of the hydrogen filling process by analyzing hydrogen flow including hydrogen filling in the future.

Modeling, Simulation and Optimization of Hydrogen Production Process from Glycerol using Steam Reforming (글리세롤로부터 수증기 개질에 의한 수소 생산공정의 모델링, 시뮬레이션 및 최적화)

  • Park, Jeongpil;Cho, Sunghyun;Lee, Seunghwan;Moon, Dong Ju;Kim, Tae-Ok;Shin, Dongil
    • Korean Chemical Engineering Research
    • /
    • v.52 no.6
    • /
    • pp.727-735
    • /
    • 2014
  • For improved sustainability of the biorefinery industry, biorefinery-byproduct glycerol is being investigated as an alternate source for hydrogen production. This research designs and optimizes a hydrogen-production process for small hydrogen stations using steam reforming of purified glycerol as the main reaction, replacing existing processes relying on steam methane reforming. Modeling, simulation and optimization using a commercial process simulator are performed for the proposed hydrogen production process from glycerol. The mixture of glycerol and steam are used for making syngas in the reforming process. Then hydrogen are produced from carbon monoxide and steam through the water-gas shift reaction. Finally, hydrogen is separated from carbon dioxide using PSA. This study shows higher yield than former U.S. DOE and Linde studies. Economic evaluations are performed for optimal planning of constructing domestic hydrogen energy infrastructure based on the proposed glycerol-based hydrogen station.

An Experimental Study on the FMEA Evaluation of Non-metallic Materials in High-Pressure Hydrogen Facility (고압 수소설비용 비금속부품 소재의 FMEA 평가를 통한 실험적 연구)

  • Ahn, Jeongjin;Kim, Wanjin;Kim, Laehyun
    • Journal of Energy Engineering
    • /
    • v.28 no.3
    • /
    • pp.10-17
    • /
    • 2019
  • According to South Korea's policy of supplying eco-friendly hydrogen vehicles, related industries are actively conducting research on the development of hydrogen cars and hydrogen charging station infrastructure. On the other hand, there is a lack of empirical research and assessment of the risk of non-metallic materials (such as liners, seals, gaskets) for classified materials that directly affect the durability and reliability of hydrogen vehicles and hydrogen charging stations. In this study, the risk factors for liners and seals of non-metallic parts used in high-pressure hydrogen installations were derived using FMEA, and the RPN values were calculated by converting the severity, frequency of occurrence and degree of detection into scores. The maximum value of the RPN 600, minimum value 63, average value 278.5 was calculated and periodic control of the liner and seal was identified as important. In addition, through hydrogen soakage and oxygen aging tests for non-metallic rubber products, physical test values that can be used as basic data were presented.

A Simulation Study of Renewable Power based Green Hydrogen Mobility Energy Supply Chain Systems (재생에너지 기반 청정 수소 운송 에너지 시스템 모사 연구)

  • Lee, Joon Heon;Ryu, Jun-Hyung
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.34-50
    • /
    • 2022
  • Since the Paris climate agreement, reducing greenhouse gases has been the most important global issue. In particular, it is necessary to reduce fossil fuels in the mobility sector, which accounts for a significant portion of total greenhouse gas emissions. In this paper, we investigated the economic feasibility of green mobility energy supply chains, which supply hydrogen as fuel to hydrogen vehicles based on electricity from renewable energy sources. The design and operation costs were analyzed by evaluating nine scenarios representing various combinatorial possibilities such as renewable energy generation, hydrogen production through water electrolytes, hydrogen storage and hydrogen refueling stations. Simulation calculations were made using Homer Pro, widely used commercial software in the field. The experience gained in this study could be further utilized to construct actual hydrogen energy systems.

Exergy Analysis and Heat Exchanger Network Synthesis for Improvement of a Hydrogen Production Process: Practical Application to On-Site Hydrogen Refueling Stations (수소 생산 공정 개선을 위한 엑서지 분석과 열 교환망 합성: 분산형 수소 충전소에 대한 실용적 적용)

  • YUN, SEUNGGWAN;CHO, HYUNGTAE;KIM, MYUNGJUN;LEE, JAEWON;KIM, JUNGHWAN
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.5
    • /
    • pp.515-524
    • /
    • 2022
  • In this study, the on-site hydrogen production process for refueling stations that were not energy-optimized was improved through exergy analysis and heat exchange network synthesis. Furthermore, the process was scaled up from 30 Nm3/h to 150 Nm3/h to improve hydrogen production capacity. Exergy analysis results show that exergy destruction in the SMR reactor and the heat exchanger accounts for 58.1 and 19.8%, respectively. Thus, the process is improved by modifying the heat exchange network to reduce the exergy loss in these units. As a result of the process simulation analysis, thermal and exergy efficiency is improved from 75.7 to 78.6% and 68.1 to 70.4%, respectively. In conclusion, it is expected to improve the process efficiency when installing on-site hydrogen refueling stations.

The trend of domestic and foreign development and hereafter subjects of Hydrogen-Compressed Natural Gas(HCNG) Vehicles (수소-압축천연가스(HCNG) 자동차 국내외 개발동향 및 향후과제)

  • Lee, Youngchul;Han, Jeongok;Lee, Joongseong;Chae, Jeongmin;Hong, Seongho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.226.2-226.2
    • /
    • 2010
  • 수소경제로 가는 길목에서의 압축천연가스에 수소를 첨가한 수소-압축천연가스(HCNG)는 자동차 연료로서의 뛰어난 효과로 인해 미국, 캐나다, 유럽 등에서는 강화되고 있는 자동차의 배출가스 규제에 대해 만족할 수 있는 차세대 천연가스 자동차의 대안으로서 관련 기술개발과 실증사업에 주력하고 있다. 향후 수소시대의 도래에 즈음하여 HCNG의 사용은 수소사용에 대한 인식 향상과 아울러 수소사용을 안정적으로 공급할 수 있는 토대를 마련하고 수소제조 등 여러 분야에서 기술개발을 할 수 있는 부가적인 효과가 있다고 하겠다. 따라서 최근 국내에서 시내버스와 청소차등에서 천연가스 차량의 보급이 확대되고 있고, 충전소도 점차 확대되고 있는 상황에서 HCNG 연료의 적용가능성을 확인하기 위한 연구가 진행되고 있다. 본 논문에서는 선진국과 국내의 기술개발 현황을 소개하고 향후 우리에게 필요한 과제가 무엇인지를 생각해보는 기회를 갖고자 하였다.

  • PDF

Hydrogen Generation Technology for Hydrogen Fueling Station (수소스테이션용 고효율 수소제조 기술개발)

  • Oh, Young-Sam;Park, Dal-Lyung;Cho, Young-Ah
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.92-101
    • /
    • 2005
  • 세계적으로 수소에너지를 미래 에너지의 대안으로 여겨지고 있기 때문에 수소에너지 관련기술은 미래 국가 경쟁력을 좌우할 것으로 예상되고 있으며 수소에너지시대의 핵심인 수소스테이션 관련기술을 개발은 국가 연료전지 시장을 비롯한 수소 자동차 산업 전반에 큰 영향을 미칠 것으로 예상되고 있다. 이에 따라 전 세계적으로 수소에너지를 차세대 에너지원으로 개발하기 위하여 전력을 다하고 있으며 수소제조기술개발 및 수소스테이션 실증연구가 진행되고 있다. 본 연구에서는 수소제조장치 관련 국내외 기술개발 현황과 수소스테이션용 고효율 수소제조장치 장치 개발 현황을 소개하고자 한다.

  • PDF

The Trend of Domestic and Foreign Development and Hereafter Subjects of Hydrogen-Compressed Natural Gas (HCNG) Vehicles (수소-압축천연가스(HCNG) 자동차 국내외 개발동향 및 향후과제)

  • Lee, Young-Chul;Han, Jeong-Ok;Lee, Joong-Seong;Chae, Jeong-Min;Hong, Seong-Ho
    • New & Renewable Energy
    • /
    • v.6 no.3
    • /
    • pp.30-38
    • /
    • 2010
  • 수소경제로 가는 길목에서의 압축천연가스에 수소를 첨가한 수소-압축천연가스(HCNG)는 자동차 연료로서의 뛰어난 효과로 인해 미국, 캐나다, 유럽 등에서는 강화되고 있는 자동차의 배출가스 규제에 대해 만족할 수 있는 차세대 천연가스 자동차의 대안으로서 관련 기술개발과 실증사업에 주력하고 있다. 향후 수소시대의 도래에 즈음하여 HCNG의 사용은 수소사용에 대한 인식 향상과 아울러 수소사용을 안정적으로 공급할 수 있는 토대를 마련하고 수소제조 등 여러 분야에서 기술개발을 할 수 있는 부가적인 효과가 있다고 하겠다. 따라서 최근 국내에서 시내버스와 청소차등에서 천연가스 차량의 보급이 확대되고, 충전소도 점차 확대되고 있는 상황에서 HCNG 연료의 적용가능성을 확인하기 위한 연구가 진행되고 있다. 본 논문에서는 인프라 관점에서의 선진국과 국내의 기술개발 현황을 소개하고 향후 우리에게 필요한 과제가 무엇인지를 생각해보는 기회를 갖고자 하였다.

Evaluation of Metering Accuracy of Hydrogen Station Using Master Meter Method (표준유량계법을 적용한 수소 충전소 계량 정확도 평가)

  • Han, Wonguk;Yim, Sangsik;Song, Bohee;Kil, Sunghee;Kim, Younggyu;Kim, Hongchul
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.6
    • /
    • pp.67-73
    • /
    • 2019
  • Hydrogen is difficult to accurately measure the amount of charge due to sudden temperature changes and pressure rise when charging the vehicle. In order to construct a hydrogen infrastructure, it is important to precisely measure the amount of charge that can be a sensitive issue in commercial transactions. In this study, the accuracy of metering of domestic hydrogen stations was evaluated as a study for metering management of hydrogen dispenser. For the experiment, we constructed metering system using master meter method and measured the flow rate in the actual hydrogen vehicle charging environment. As a result of error occurred about 10% on average, and the hydrogen loss per one charge was found to be up to 60g.