• 제목/요약/키워드: Hydrogen Removal Rate

검색결과 145건 처리시간 0.022초

연속반응공정을 이용한 유기성자원으로부터 수소생산을 위한 최적인자도출에 관한 연구 (Deduction of Optimum Factors for Hydrogen Production from Organic Resources using a Continuous Reaction Process)

  • 김충곤;신현곤
    • 유기물자원화
    • /
    • 제19권2호
    • /
    • pp.22-27
    • /
    • 2011
  • 본 연구에서는 음식물류폐기물폐수와 양돈폐수를 특별히 전처리 하지 않고 3:7의 비율로 혼합하여 연속반응공정을 이용한 수소생산의 최적 인자를 도출하기 위해 연구를 수행하였다. 본 연구결과 수소발생량은 pH 5.5의 조건에서 가장 많이 발생하였으며, 이를 통해 음식물류폐기물과 양돈폐수의 혼합시의 수소생산의 최적 pH는 5.5 임을 확인하였다. HRT에 따른 수소발생량은 3일보다 4일의 경우에 높은 수소발생량을 보였으며, 이는 HRT값의 변화에 따라 수소발생미생물의 활성에 크게 관여하는 것으로 HRT역시 수소발생미생물에 중요한 인자로 작용한다고 판단된다. 유기물의 제거율은 운전 6일째에 최대 TS 52%, VS 71%, TSS 83%, VSS 89%의 제거율을 기록하였으며, 수소생산 공정을 통하여도 유기물의 제거가 가능함을 확인하였다.

질산염을 함유한 폐수의 상향류식 공법에 의한 혐기성 처리 (Anaerobic Treatment of Wastewater containing Nitrate by Upflow Process)

  • 이원식;은종극
    • 환경위생공학
    • /
    • 제13권2호
    • /
    • pp.95-105
    • /
    • 1998
  • This research was investigated which denitrification of wastewater containing nitrate, using upflow anaerobic sludge blanket process. The upflow anaerobic sludge blanket process is also used for both artifical and industrial wastewater. Main ingredients investigated in the artifical and industrial wastewater experiment were the determination of optimum organism/nitrate ratios, nitrate removal efficiency by various hydrogen donor addition and characteristics of granular sludge and gas production in case of various hydrogen donor addition. From the experimental results the following conclusions were made: In case of adding methanol, ethanol and sodium acetate as hydrogen donor granular sludge was formed 50 days after seeding. Average diameter of granular sludge was 4.0 mm and settling velocity was 37 cm/min. Production rate of gas 3.3 L/d in case of adding methanol as hydrogen donor in wastewater containing 150mg/L nitrate. However adding ethanol and sodium acetate as hydrogen donor, gas production rate were 2.2-2.7L/d respectively. In case of adding methanol as hydrogen donor treatability of artifical wastewater contained 150mg/L as nitrate was about 93%. But in addition of sodium acetate in wastewater contained 40mg.L as nitrate, nitrate removal efficiency was 80%.

  • PDF

Anaerobic Hydrogen Fermentation and Membrane Bioreactor (MBR) for Decentralized Sanitation and Reuse-Organic Removal and Resource Recovery

  • Paudel, Sachin;Seong, Chung Yeol;Park, Da Rang;Seo, Gyu Tae
    • Environmental Engineering Research
    • /
    • 제19권4호
    • /
    • pp.387-393
    • /
    • 2014
  • The purpose of this study is to evaluate integrated anaerobic hydrogen fermentation and membrane bioreactor (MBR) for on-site domestic wastewater treatment and resource recovery. A synthetic wastewater (COD 17,000 mg/L) was used as artificial brown water which will be discharged from urine diversion toilet and fed into a continuous stirred tank reactor (CSTR) type anaerobic reactor with inclined plate. The effluent of anaerobic reactor mixed with real household grey water (COD 700 mg/L) was further treated by MBR for reuse. An optimum condition maintained in anaerobic reactor was HRT of 8 hrs, pH 5.5, SRT of 5 days and temperature of $37^{\circ}C$. COD removal of 98% was achieved from the overall system. Total gas production rate and hydrogen content was 4.6 L/day and 52.4% respectively. COD mass balance described the COD distribution in the system via reactor byproducts and effluent COD concentration. The results of this study asserts that, anaerobic hydrogen fermentation combined with MBR is a potent system in stabilizing waste strength and clean hydrogen recovery which could be implemented for onsite domestic wastewater treatment and reuse.

고정상 담체를 충진한 BER에서 HRT, 전류밀도 및 담체 충진율 변화가 질산성 질소 제거효율과 전류이용효율에 미치는 영향 (The effect of HRT, current density, and packing ratio on nitrate nitrogen removal efficiency and current efficiency in BRM-BER)

  • 황규대;이상근;성해창
    • 상하수도학회지
    • /
    • 제24권4호
    • /
    • pp.433-442
    • /
    • 2010
  • BER at different packing ratios of bio-ring media(BRM) was tested to investigate the effect of varying hydraulic retention time (HRT) and current density on the nitrate removal and current efficiency. In the preliminary batch mode experiment of BERs, current density was applied at 2.0 A/$m^2$, 4.0 A/$m^2$, 4.8 A/$m^2$, which correspond to the designation of reactor #1, #2, #3, respectively. The reactor #2 showed a highest nitrate removal rate of 162.0 mg $NO_3{^-}$-N/L/d, and the kinetics of nitrate removal rate was defined as the Zero order reaction. In the primary experiment of BERs, four BERs packed with BRM were operated in varying HRT and current, and the packing ratios of reactor #1, #2, #3 and #4 were 0%, 8%, 16%, 24%. respectively. This results of the experiments indicated that the nitrate removal rate and current efficiency were increased significantly cause of growing of autotrophic denitrification microorganisms on the surface of cathode and media by increasing of the current density and decreasing of HRT. However, The decreasing of nitrate removal rate and current efficiencies were observed in the condition of HRT of 5.25 hr and 4.8 A/$m^2$ of current density. With more increasing current density and decreasing of HRT, the hydrogen inhibition occurred at the surface of cathode. Moreover, nitrate removal rate by autotrophic denitrification microorganisms attached on the media surface was observed to be limited by no longer increasing dissolved hydrogen concentration of each reactor. In conclusion, the highest nitrate nitrogen removal and current efficiency could be achieved when the BER was operated at the conditions of 7 hr HRT, current density of 4.0 A/$m^2$, and 16% packing ratio. And it was found that the amount of nitrate removal by microorganisms attached on the surface of cathode and media (BRM) was 178.2 mg/L and 52.2 mg/L respectively. and the amount of nitrate removal per MLVSS was 0.435 g $NO_3{^-}$-N/g $MLVSS{\cdot}d$ and 0.336 $NO_3{^-}$-N/g $MLVSS{\cdot}d$.

혐기성 슬러지에 의한 폐수의 질소 제거에 관한 연구 (A Study on the Nitrogen Control in the Wastewater by Upflow Anaerobic Sludge Blanket.)

  • 은종극
    • 환경위생공학
    • /
    • 제12권2호
    • /
    • pp.75-81
    • /
    • 1997
  • The study was investigated with denitrification of wastewater containing nitrate using upflow anaerobic sludge blanket process. Contents of this study were the determination of nitrate removal efficiency by various hydrogen donor addition, relationship between HRT, nitrate loading rate and growth constant of microorganism in case or various hydrogen donor addition etc. Results from this study were summurized as follows. In case of adding methanol, ethanol, sodium acetate as hydrogen donor, treatability of wastewater contained 200mg/l as nitrate was about 91%. But in addition of ethanol, sodium acetate in wastewater contained 40mg/l as nitrate, nitrate removal efficiency was 80%. While the treatment of nitrate showed the yield coefficient of microorganisms(Y) as 234.8, 234.35, and 247.68 g/VSS/g nitrate, respectively, showed specific growth rate(K) as 0.885, 0.934 and 0.917 respectively.

  • PDF

Fe-EDTA 착물을 이용한 황화수소 제거의 최적 반응 조건 (Optimum Conditions for Removal of Hydrogen Sulfide Using Fe-EDTA Complex)

  • 진상기;차진명;이인화;윤석진;김시욱
    • 공업화학
    • /
    • 제7권1호
    • /
    • pp.177-185
    • /
    • 1996
  • Fe-EDTA 착물을 이용한 황화수소 제거의 최적 반응 조건을 기포탑 반응기에서 조사하였다. 착물의 농도가 증가할수록 황화수소 산화 반응에서 전환량은 증가하였고 pH 변화와 Fe 농도는 완만하게 감소하였으며, elemental sulfur의 생성량은 증가하였다. 또한 황화수소는 0.05M 이상의 착물 농도에서 효율적으로 제거되었다. pH에 따른 황화수소 산화반응에서 pH는 착물의 안정도에 중요한 인자이고 반응 중 최적 pH 범위는 8.5~9.5 이었다. [EDTA]/[Fe] 비가 증가할수록 황화수소 산화 반응의 전환량은 증가하였고 반응 중 EDTA 농도가 감소하면 FeS로 침전이 촉진되어 전환량은 감소하였다. 즉 EDTA 농도가 증가될수록 Fe-EDTA 착물이 안정되어 전환량이 증가하였다.

  • PDF

고온석탄가스에서 황화물을 제거하기 위한 다공성 흡착제의 개발 -II. 산화아연의 황화반응에 관한 연구- (Development of Porous Sorbents for Removal of Hydrogen Sulfide from Hot Coal Gas -II. Kinetics of Suffidation on Zinc Oxide -)

  • 서인식;이재복;류경옥
    • 한국환경보건학회지
    • /
    • 제14권1호
    • /
    • pp.11-22
    • /
    • 1988
  • Calcium oxide, lithium oxide and titanium oxide were investigated as additives of zinc oxide for the removal of hydrogen sulfide at high temperature. This experiment was performed in the range of 1.0-2.0 vol.% H$_2$S concentration at 623-873 K reaction temperature, using a thermogravimetric analyzer. A pore blocking model was found to fit the reaction rate and the kinetics data were sucessfully expressed by this model. The reactions between additive sorbents and hydrogen sulfide were first order with respect to hydrogen sulfide concentration in a gaseous mixture with nitrogen. Among the used sorbents, ZnO-CaO 0.5 at.% and ZnO-TiO$_2$ 2.0 at.% sorbents had the best additive effects on the sulfidation reaction between additive sorbents and hydrogen sulfide, whereas the ZnO-Li$_2$O sorbents were ineffective.

  • PDF

전기부상과 혐기성 수소 발효 공정의 결합을 통한 미세조류 제거 및 에너지 생산 (Microalgae Removal and Energy Production by Combined Electro-flotation and Anaerobic Hydrogen Fermentation Processes)

  • 이채영;나동채;최재민;강두선
    • 유기물자원화
    • /
    • 제20권3호
    • /
    • pp.83-88
    • /
    • 2012
  • 부영양화로 인한 조류의 과도한 번식은 하천과 호수의 수질에 심각한 문제를 야기하고 있다. 따라서 하천과 호수의 수질 오염 방지를 위해서는 물리화학적 또는 생물학적 처리를 통해 효과적인 조류 제거가 필요하다. 본 연구에서는 전기부상과 혐기성 수소 발효 공정의 연계를 통해 효과적인 조류 제거와 에너지를 생산하고자 하였다. Chlorophyll a를 기준으로 전기부상에 의한 조류 제거효율은 전류 증가에 따라 증가하였으며 최대 95.9%로 나타났다. 제거된 조류로부터 에너지를 회수하기 위하여 혐기성 수소 발효 타당성을 조사하였다. 조류와 초음파로 전처리를 수행한 조류의 최종 수소 수율은 각각 17.3및 61.1ml $H_2/g$ dcw(dry cell weight)로 나타났다. 조류의 초음파 전처리는 가수분해 속도를 증가시켜 최대 수소 수율을 3.4배 향상시키는 것으로 나타났다.

오존에 의한 암모니아 산화시 과산화수소가 미치는 영향 (Effect on the Hydrogen Peroxide in the Ozonation of Ammonia)

  • 박문숙;안재동;노봉오
    • 한국환경보건학회지
    • /
    • 제27권1호
    • /
    • pp.1-7
    • /
    • 2001
  • Ammonia is used in the manufacture of fertilizers, refrigerants, stabilizers and many household cleaning agents. These wide applications resulted in ammonia contamination in water. Ammonia can be removed from water by physical, biological, and chemical methods. Ozonation is effictive in the treatment of water with low concentration of ammonia. This study is undertaken to provide kinetic data for the ozonation of ammonia with or without hydrogen peroxide. The results were as follows; The destruction rate of ammonia increased gradually with the influent hydrogen peroxide concentration up to 0.23 mM and inhibited in the range of 0.23~11.4mM, and the maximum removal rate of ammonia achieved at 0.23mM of hydrogen peroxide, and the overall kinetics was first order. The combination effect of hydrogen and ozone to oxide ammonia in aqueous solution was better than ozone alone. The reacted ammonia was converted completely to nitrate ion.

  • PDF

바이오가스에 포함된 고농도 황화수소의 효율적 제거를 위한 미생물반응기 (A Bioreactor for the Effective Removal of the Hydrogen Sulfide from Biogas)

  • 남궁형규;윤창노;송지현
    • 한국대기환경학회지
    • /
    • 제29권6호
    • /
    • pp.811-817
    • /
    • 2013
  • A two-stage bioreactor system using sulfur-oxidizing bacteria was studied to abate high strength hydrogen sulfide ($H_2S$) from biogas. The two-stage bioreactor consisted of a $H_2S$ absorption column (0.5 L) and a microbial oxidation column (1 L) in series, and the liquid medium was continuously recirculated through the columns. The objectives of this study were to determine the feasibility of the bioreactor for biogas desulfurization and to investigate the effect of the medium circulation rate on the system performance. An averaged concentration of $H_2S$ introduced to the bioreactor was 530 ppm, corresponding to an overall loading rate of $44.4g/m^3/hr$. During the initial 20 days period at the medium recirculation rate of 8 reactor volumes per hour (12 L/hr), the dissolved oxygen (DO) concentration in the oxidation column was 6 mg/L, while the DO in the absorption column was 0.5 mg/L showing that the oxygen contents of the biogas stream was not altered. Because of the biological oxidation of $H_2S$ in the oxidation column, the sulfate concentration increased from 200 mg/L to 5,600 mg/L in the liquid medium. The removal efficiency of $H_2S$ was greater than 99% in the initial operation period. After the initial period, the medium recirculation rate between the two columns was stepwise changed eight times from 1.0 to 40 vol/hr (1.5~60 L/hr). At the recirculation rate of faster than 4 vol/hr, the $H_2S$ removal efficiencies were found to be high, but the efficiency declined at the lower recirculation rates than the threshold.