• Title/Summary/Keyword: Hydrogen Removal Rate

Search Result 145, Processing Time 0.023 seconds

Reduction of Nitrate-nigrogen by Zero-valent Iron Adhered in Mesoporous Silicas (메조기공 실리카에 부착된 영가철을 이용한 질산성 질소의 환원)

  • Yeon, Kyeong-Ho;Lee, Seunghak;Lee, Kwanyong;Park, Yong-Min;Kang, Sang-Yoon;Lee, Jae-Won;Choi, Yong-Su;Lee, Sang-Hyup
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.1
    • /
    • pp.139-147
    • /
    • 2007
  • For environmental remediation of a contaminated groundwater plume, the use of zero-valent metal represents one of the latest innovative technologies. In this study, the effects of denitrification by zero-valent iron adsorbed in mesoporous silicas have been studied for groundwater contaminant degradation. The mesoporous silica was functionalized with 3-mercaptopropyltrimethoxysilane (MPTS) ligands and the zero-valent iron precipitated in the mesopore of granular silica was made by $FeCl_2$ and $NaBH_4$. Hydrogen was exchanged with $Fe^{2+}$ ions in the granular silicas. And then the ions were reduced by sodium borohydride in the mesoporous silicas. The surface area of the silica determined via the BET method ranged from 858 to $1275m^2/g$. The reductive reaction of nitrate-nitrogen indicated that the degradation of nitrate-nitrogen appeared to be pseudo first-order with the observed reaction rate constant kobs ($0.1619h^{-1}$) and to be directly proportional to the specific surface area. Therefore, the mesoporous silica with nano zero-valent iron proposed as a novel treatment strategy for contaminated groundwater was successfully implemented herein for the removal of nitrate-nitrogen.

Empirical Study of Biogas Purification Equipment (바이오가스 정제 설비의 실증 연구)

  • Hwan Cheol Lee;Jae-Heon Lee
    • Plant Journal
    • /
    • v.18 no.4
    • /
    • pp.58-65
    • /
    • 2023
  • In this study, to increase the methane content of biogas supplied from Nanji Water Regeneration Center and to purify impurities, a three-stage membrane purification process was designed and installed to demonstrate operation. The methane concentration of biomethane produced in the 2 Nm3/h purification process was set to three cases: 95%, 96.5%, and 98%, and the membrane area ratio of the membrane was 1:1, 1:2, 1:1:1, The optimum conditions for the membrane area of the separator were derived by changing to five of 1:2:1 and 1:2:2. 3 stage separation membrane process of 30 Nm3/h was installed to reflect the optimum condition of 2 Nm3/h, and biomethane production of 98% or more of methane concentration was demonstrated. As a result of the operation of the 2 Nm3/h refining device, the methane recovery rate at the 98% methane concentration was 95.6% when the membrane area ratio was 1:1 as the result of the two-stage operation of the separator, and the recovery rate of methane at 1:2 was increased to 96.8%. The methane recovery rate of the membrane three-stage operation was highest at 96.8% when the membrane area ratio was operated at 1:2:1. The carbon dioxide removal rate was 16.4 to 96.4% and the 2:2 to 95.7% film area ratio in the two-step process. In the three-step process, the film area ratio was 1:2:1 to 95.4%, and the two-step process showed higher results than the three-step process. In the 30 Nm3/h scale biogas purification demonstration operation, the methane concentration after purification was 98%, the recovery rate of methane was 97.1%, the removal rate of carbon dioxide was 95.7%, and hydrogen sulfide, the cause of corrosion, was not detected, and the membrane area ratio was 1:2:1 demonstration operation, biomethane production with a methane concentration of 98% or higher was possible.

  • PDF

A Case Study on Phytoremediation in Polluted Stream by Heilianthus annuus (Heilianthus annuus에 의한 오염된 하천에서의 Phytoremediation에 관한 연구)

  • Choi, Moon-Sul
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.11 no.4
    • /
    • pp.165-171
    • /
    • 2006
  • This is the research to prepare a purification program for relatively less polluted stream by using phytoremediation. We calculated a treatment amount of nutrients followed by growth of Helianthus annuus (a kind of sunflower), setting up the plant reactor in the hothouse. Moreover, to investigate a field applicability, we could find increased contents of nitrogen, carbon and hydrogen in plants by setting up a H. annuus planted artificial floating island in an irrigation canal. When we changed the dissolved inorganic nitrogen(DIN) concentration of the influent from 28.5 to 199.2 mg/l and the dissolved inorganic phosphorus(DIP) concentration of the influent from 13.3 to 25.4 mg/l, growth disorder has not appeared though it is much higher than the criterion of water for irrigation. In this case, the removal rate of DIN was $81.7\sim98.6%$, and that of DIP was $81.9\sim98.4%$ in 3 days stay on average. It has appeared that the efficient hydraulic retention time(HRT) was 48 hours. The following contents of nitrogen, carbon and hydrogen of H. annuus appeared in the artificial floating island: nitrogen was $3.2\sim7.8%$ in the trunk and $3.0\sim6.3%$ in the root. Carbon was $40.1\sim57.7%$ in the trunk and $43.4\sim53.8%$ in the root.

A Study on the Impacts of Paste Type Torrefied Wood Flour Coagulants on Water Ecosystem (반탄화목분 Paste상 응집제의 수생태계 미치는 영향에 관한 연구)

  • YANG, Seung Min;LEE, Seok Eon;PARK, Hae Keum;KANG, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.6
    • /
    • pp.709-720
    • /
    • 2019
  • Due to global warming and abnormal climate, the incidence and scale of green tracts in rivers and water intake dam are increasing every year. Therefore, in this study, developed eco friendly positively charged Torrefied Wood Flour(TWF) coagulant by reusing wood damaged by blight as a natural material. In order to evaluate the effect of coagulant on water ecosystem, green algae contaminated water was collected and TOC showed high removal rate of 86% ~ 92% under 1% and 5% TWF C-PAM treatment condition. The $NH_3-N$ showed 53% removal efficiency. The average pH of the polluted water was 7.9 in the case of hydrogen ion concentration, and the pH of the treated water was in the range of 6.5 ~ 7.7, It was found to be suitable for water quality standards. In ecotoxicity tests, all the results of the experiment showed that both the number of green algae and that of treated water were not affected by the survival of the daphnia. Therefore, as a result of the analyzing, developed paste type TWF coagulants is considered to be able to remove algae using natural resources.

Catalytic Wet Oxidation of Azo Dye Reactive Black 5 (아조염료 Reactive Black 5 폐수의 촉매습식산화)

  • Suh, Il-Soon;Yoo, Shin-Suk;Ko, Mi-So;Jeong, Samuel;Jung, Cheol-Goo;Hong, Jeong-Ah;Yoon, Wang-Lai
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.259-267
    • /
    • 2010
  • The catalytic wet oxidations of the wastewater containing azo dye Reactive Black 5(RB5) with heterogeneous catalyst of CuO have been carried out to investigate the effects of temperature($190{\sim}230^{\circ}C$) and catalyst concentration(0.00~0.20 g/l) on the removals of colour and total organic carbon TOC. The wastewater colour was measured with spectrophotometer, and the oxidation rate was estimated with TOC. About 90% of colour was removed during 120 min in thermal degradation of the RB5 wastewater at $230^{\circ}C$, while TOC was not removed at all. As increasing reaction temperature and catalyst concentration, the removal rates of colour and TOC increased in the catalytic wet oxidations of RB5 wastewater. The effects of catalyst were already considerable even at 0.01 g CuO/l, while the removal rates of colour and TOC increased negligibly with increasing the catalyst concentration above 0.05 g CuO/l. The initial destruction rates of the wastewater colour have shown the first-order kinetics with respect to the wastewater colour. TOC changes during catalytic wet oxidations have been well described with the global model, in which the easily degradable TOC was distinguished from non-degradable TOC of the wastewater. The impacts of reaction temperature on the destruction rate of the wastewater colour and TOC could be described with Arrhenius relationship. Activation energies of the colour removal reaction in thermal degradation, wet oxidation, and catalytic wet oxidation(0.20 g CuO/l) of the RB5 wastewater were 108.4, 78.3 and 74.1 kJ/mol, respectively. The selectivity of wastewater TOC into the non-degradable intermediates relative to the end products in the catalytic wet oxidations of RB5 wastewater was higher compared to that in phenol wet oxidations.

Advanced Treatment of Sewage and Wastewater Using an Integrated Membrane Separation by Porous Electrode-typed Electrolysis (분리막/다공 전극형 전기분해 조합공정을 이용한 하.폐수의 고도처리)

  • Choi, Yong-Jin;Lee, Kwang-Hyun
    • Membrane Journal
    • /
    • v.22 no.2
    • /
    • pp.95-103
    • /
    • 2012
  • To treat nitrate and non-biodegradable organics effectively in sewage, industrial wastewater and livestock wastewater, the activated sludge process integrated by a membrane separation and a porous electrode- electrolysis was proposed and its efficiency was investigated. The proposed system was consisted of 3 processes; activated sludge, membrane filtration and electrolysis. In the study, the membrane filtration played a role in reducing the load of the electrolysis to operate the proposed process stably. The electrolysis consisted of a porous electrode to increase the efficiency due to the extension of the specific surface area. Additionally, redox reaction in the electrolysis was induced by decomposing influent water as current was applied. As a result, hydrogen free radicals and oxygen radicals as intermediates were produced and they acted as oxidants to play a role in decomposing non-degradable organics. It was environmentally-friendly process because intermediates produced by porous electrode were used to treat waste matters without supplying external reagent. Experimental data showed that the proposed process was more excellent than activated sludge process. SS removal efficiencies of the proposed process, membrane filtration and activated sludge process were about 100%, about 100% and about 90%, respectively. COD removal efficiencies of the proposed system, membrane filtration and activated sludge process were about 92%, about 84% and about 78%, respectively. T-N removal efficiencies of the proposed system, membrane filtration and activated sludge process were about 88%, about 67%, and about 58%, respectively. The SS data showed that SS was efficiently removed in the single of the membrane filtration. The COD/T-N data showed that COD/T-N of membrane hybrid process was treated by removing a little soluble organics and SS, and that COD/T-N of electrolysis hybrid process was treated by oxidize organics with high removal rate.

Self-purification Mechanisms in Natural Environments of Korea: I. A Preliminary Study on the Behavior of Organic/Inorganic Elements in Tidal Flats and Rice Fields (자연 정화작용 연구: I. 갯벌과 농지 상층수중 유 ${\cdot}$ 무기 원소의 거동에 관한 예비 연구)

  • Choi, Kang-Won;Cho, Yeong-Gil;Choi, Man-Sik;Lee, Bok-Ja;Hyun, Jung-Ho;Kang, Jeong-Won;Jung, Hoi-Soo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.3
    • /
    • pp.195-207
    • /
    • 2000
  • Organic and inorganic characteristics including bacterial cell number, enzyme activity, nutrients, and heavy metals have been monitored in twelve acrylic experimental tanks for two weeks to estimate and compare self-purification capacities in two Korean wet-land environments, tidal flat and rice field, which are possibly different with the environments in other countries because of their own climatic conditions. FW tanks, filled with rice field soils and fresh water, consist of FW1&2 (with paddy), FW3&4 (without paddy), and FW5&6 (newly reclaimed, without paddy). SW tanks, filled with tidal flat sediments and salt water, are SW1&2 (with anoxic silty mud), SW3&4 (anoxic mud), and SW5&6 (suboxic mud). Contaminated solution, which is formulated with the salts of Cu, Cd, As, Cr, Pb, Hg, and glucose+glutamic acid, was spiked into the supernatent waters in the tanks. Nitrate concentrations in supernatent waters as well as bacterial cell numbers and enzyme activities of soils in the FW tanks (except FW5&6) are clearly higher than those in the SW tanks. Phosphate concentrations in the SW1 tank increase highly with time compared to those in the other SW tanks. Removal rates of Cu, Cd, and As in supematent waters of the FW5&6 tanks are most slow in the FW tanks, while the rates in SW1&2 are most fast in the SW tanks. The rate for Pb in the SW1&2 tanks is most fast in the SW tanks, and the rate for Hg in the FW5&6 tanks is most slow in the FW tanks. Cr concentrations decrease generally with time in the FW tanks. In the SW tanks, however, the Cr concentrations decrease rapidly at first, then increase, and then remain nearly constant. These results imply that labile organic materials are depleted in the FW5&6 tanks compared to the FW1&2 and FW3&4 tanks. Removal of Cu, Cd, As from the supernatent waters as well as slow removal rates of the elements (including Hg) are likely due to the combining of the elements with organic ligands on the suspended particles and subsequent removal to the bottom sediments. Fast removal rates of the metal ions (Cu, Cd, As) and rapid increase of phosphate concentrations in the SW1&2 tanks are possibly due to the relatively porous anoxic sediments in the SW1&2 tanks compared to those in the SW3&4 tanks, efficient supply of phosphate and hydrogen sulfide ions in pore wates to the upper water body, complexing of the metal ions with the sulfide ions, and subsequent removal to the bottom sediments. Organic materials on the particles and sulfide ions from the pore waters are the major factors constraining the behaviors of organic/inorganic elements in the supernatent waters of the experimental tanks. This study needs more consideration on more diverse organic and inorganic elements and experimental conditions such as tidal action, temperature variation, activities of benthic animals, etc.

  • PDF

Investigation on Optimal Aeration Rate for Minimizing Odor Emission during Composting of Poultry Manure with Sawdust (계분톱밥 퇴비화시 악취발생의 최소화를 위한 적정 공기주입을 구명)

  • Kang, Hang-Won;Park, Hyang-Mee;Ko, Jee-Yeon;Lee, Jae-Saeng;Kim, Min-Tae;Kang, Ui-Gum;Lee, Dong-Chang;Moon, Huhn-Pal
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.4
    • /
    • pp.225-231
    • /
    • 2001
  • This study was conducted to find out the optimal aeration rates for minimizing odor emission and for increasing biological activities during composting of livestock manure in the enclosed bench-scale reactor system. It was treated with the mixture of poultry manure and sawdust controlled the initial water content of 60%, then aerated continuously at four different aeration rates (0.1, 0.2, 0.4 and 0.6 L/min/kg dry-solids). The average emitted concentration of ammonia in 0.6 L/min/kg dry-solids during composting reached the level of 40% in comparison with that of 0.2 L/min/kg dry-solids. In cases of sulfur compounds such as hydrogen sulfide, methylmercaptan and ethylmercaptan, their concentrations decreased with increasing aeration rates and the emission time was shortened. But they didn't detect in the treatment of 0.6 L/min/kg dry-solids. The biological activity for composting showed a trend of increasing as aeration rates increased. The treatment of 0.6 L/min/kg dry-solids gave the highest biological activity and the best compost quality.

  • PDF

Analysis of Archaeal Communities in Full-Scale Anaerobic Digesters Using 454 Pyrosequencing (454 Pyrosequencing을 이용한 실규모 혐기성 소화조의 아케아 군집구조 분석)

  • Kang, Hyun-Jin;Kim, Taek-Seung;Lee, Young-Haeng;Lee, Taek-June;Han, Keum-Suk;Choi, Young-Jun;Park, Hee-Deung
    • Korean Journal of Microbiology
    • /
    • v.47 no.3
    • /
    • pp.209-217
    • /
    • 2011
  • Archaeal communities were investigated using 454 pyrosequencing technology based on 16S rRNA gene in 11 samples collected from six different full-scale anaerobic digesters. Observed operational taxonomic units (OTUs) estimated from the archaeal 16S rRNA gene sequences were 13-55 OTUs (3% cutoff) which was corresponded to 29-89% of Chao1 richness estimates. In the anaerobic digesters there were archaeal sequences within the orders Thermoproteales, Thermoplasmatales, Desulfurococcales as well as within the orders Methanomicrobiales, Methanobacteriales, Methanococcales, Methanosarcinales, and Methanocellales, which are known to produce methane. Among these orders, Methanococcales known to produce methane using hydrogen was the predominant taxon and constituted 51.8-99.7% of total sequences. All samples showed a very similar community structure (Pearson correlation coefficient=0.99) except for one sample based on a heat map analysis. In addition, canonical correspondence analysis correlating archaeal communities to the environmental variables demonstrated that digester temperature and total solids removal rate were the two important explanatory variables. Overall results suggested that environmental and operational variables of anaerobic digester are important factors determining archaeal diversity and community structure.

Effects of Operating Parameters on Phenol Degradation by Pulsed Corona Discharges in Aqueous Solutions (펄스 코로나 방전에 의한 페놀 분해에 미치는 운전변수의 영향)

  • Chung, Jae-Woo;Moon, Ji-Hoon;Park, Eun-Ok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.1
    • /
    • pp.79-86
    • /
    • 2010
  • Effects of operating parameters such as applied voltage, solution conductivity, ferrous ion concentration, electrode material on phenol degradation by pulsed corona discharges were investigated in laboratory scale experiments. The increase of applied voltage enhanced the phenol degradation by generating more energetic electrons. The solution conductivity inversely affected phenol removal rate in the tested ranges because the increase of conductivity decreased the electric field strength through the liquid phase. The addition of ferrous sulfate promoted the phenol degradation through the OH radical production by the Fentonlike reactions between ferrous ion and hydrogen peroxide generated by pulsed corona discharges. Catechol and hydroquinone were detected as primary intermediates of phenol degradation and the decrease of pH and the increase of conductivity were observed probably due to the generation of organic acids. Almost all of the initial phenol was disappeared and 29% of total organic corbon (TOC) was removed in the condition of 0.5 mM of ferrous sulfate after approximately 230 kJ of discharge energy transferred to the reactor.